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Abstract

Adaptive systems make for robust autonomous ground ve-
hicle navigation able to react to changing environments and
to operate in unknown areas. This paper demonstrates that
adaptivity and machine learning techniques can reduce a
system’s sensitivity to sensor quality and calibration, en-
able the use of low cost and low power cameras, reduce
the dependency on active sensors such as LIDAR, and sim-
plify the process of reusing the same navigation system on
different small and large hardware platforms. In particu-
lar, this paper presents an obstacle avoidance example that
was solely implemented with end-to-end learning, a robust
camera-based long range vision system which was inte-
grated into a working robotics platform and employs a new
technique called near-to-far learning as well as the results
from countless outdoor field tests in natural environments.

1. INTRODUCTION

The goal of the Net-Scale/NYU collaboration is to create
a robotic navigation system which is adaptable end-to-end.
Today’s systems consist of a large number of components.
Each is separately optimized and has its own tolerances,
strengths and weaknesses. Such systems require extensive
fine tuning and are sensitive to calibration and to changes
in the environment. Performance can be catastrophically
affected by one failing part. A system which auto-tunes
is more robust. We believe that a system with an end-
to-end feedback loop and continuous automatic adaptation
will bring about the next break through in robotics. Years
of compartmentalized development optimizing individual
modules of a system have taken us as far as we can go. We
must now treat the whole system end-to-end.

Mobile robots that can navigate autonomously in a nat-
ural environment have wide ranging civilian and military
applications. Current systems rely on a large number and
incredible variety of sensors, followed by vast computing
resources, yet their robustness is insufficient for commer-
cial deployment and their cost, size, and power consump-
tion is prohibitive for smaller vehicles. A key deficiency
in current systems is that they rarely respond intelligently
to the unexpected, and often do not adapt to new situa-
tions and new environments. To function reliably, mobile
robots that encounter a new class of obstacle should adapt
quickly so as to perform early detection and avoidance of
similar obstacles in the future. Our teams participation in

the LAGR program demonstrated advances in large-scale
autonomous machine learning methods applied to visual
recognition and control. In particular, we showed that the
combination of convolutional networks, energy-based un-
supervised learning, and on-line self-supervised adaptation
holds great promises for highly robust and adaptive percep-
tion and control systems for mobile robots.

1.1 Low Cost Passive Sensing

Fully autonomous navigation in variable outdoor environ-
ments is the long-term goal of the Net-Scale/NYU collabo-
ration. Furthermore we focus our efforts to create technol-
ogy which can work both with active sensors, such as LI-
DAR, and passive sensors, such as regular video cameras.
Processing of passive sensors, in particular vision sensors,
is a harder problem compared to the use of active sensors
but passive sensors have a number of important advantages:
they require less power, are more difficult to detect, and are
typically less expensive than active sensors. We believe
the future will move towards passive low cost sensing and
smart computation, rather than today’s common combina-
tion of active expensive sensing and minimal computation.

Lower in power and cost, more difficult to detect, the
advantages of passive systems are numerous but the com-
putational difficulties of extracting meaningful information
from simple vision sensors have hampered the deployment
of vision based systems in the field. Within the LAGR pro-
gram we made significant progress towards resolving the
computational hurdles, enough that there has been interest
in using elements of our technology in other systems which
do not require full autonomy: to handle the short range ob-
stacle avoidance for a remote operator over a noisy link
or to drive a system back to a home base should the hu-
man driver have to abandon a piece of equipment. We hope
to use a future STTR grant to move elements of our tech-
nology into the marketplace. There are many scenarios in
the marketplace which are a perfect fit for our technology.
This includes scenarios that require full autonomy, as well
as partial autonomy.

1.2 Use Case Scenarios

A robust navigation system has many practical uses. Fol-
lowing are some typical scenarios of how the military could
use such systems in the field. Tele-operation is difficult es-
pecially over noisy communication links. We have a sys-
tem which can take over the low-level driving commands
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from a human operator allowing the human to perform
higher level tasks.

Single operator surveillance. Currently human must
tele-operate mobile robots such as the Talon series (Fos-
ter Miller, 2010) or the Packbot (iRobot, 2010). Driving the
robot to its goal takes the full attention of a skilled human
operator. With a robot capable of semi-autonomous naviga-
tion, the operator can set a goal for the robot which moves
itself into position only requiring the operator’s attention
when it encounters a problem. The semi-autonomous nav-
igation system handles all the low level driving and even
allows a single operator to control multiple vehicles. For
a surveillance task, a single operator can simply point out
numerous targets on an image or a map and send multi-
ple vehicles in parallel to move to those target locations
autonomously. The operator can then concentrate on the
actual mission, getting data from the multiple strategically
placed mobile sensor platforms, for example. To retrieve
all the vehicles would be as simple as pressing a come
home button.

Air-land rescue In many operational scenarios, because
of rough terrain or danger from ground fire, it is impossible
to land an air craft precisely where it is needed. A ground
based robot must complete the mission on land. For exam-
ple, the vehicle must drive to a wounded soldier to deliver
medical supplies, or move into a dangerous area to pro-
vide surveillance. A semi-autonomous navigation system
can integrate a map recorded from the flight or satellite im-
ages with the actual images recorded from the ground. The
ability to adapt allows our semi-autonomous navigation to
operate in a radically changed landscape such as after a nat-
ural disaster or during a military operation.

2. OVERVIEW

In this paper we present the essential elements for a ro-
bust and adaptable system capable of autonomous nav-
igation and planning in heterogeneous natural outdoor
environments.  Originally created within the DARPA
funded LAGR program (Learning Applied to Ground
Robots)(DARPA TPTO, 2005-2008) we are currently mov-
ing the system to a modular platform adaptable to a vari-
ety of robotic hardware platforms (this work was partially
supported through an Army STTR program). Within the
DARPA LAGR program, our system underwent monthly
independent government tests (Jackel et al., 2006).

There are three sections. In the first we present an earlier
prototype DAVE which was much simpler than the LAGR
system but is an example of end-to-end learning: No pa-
rameters are hand turned. The system learns to avoid ob-
stacles directly from video input. In the second section
we present LAGR’s near-to-far learning which extends the
range of the passive visual sensors from less than 10m us-
ing the stereo system to 75m and beyond. Seeing further
allows for much faster driving speeds. Our system com-
pleted an unknown outdoor obstacle course 3 times faster
compared to the state of the art system used by DARPA for
testing. In the final section we describe our recent work
about adding a type of memory to the system to make it
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more suited to longer missions. Specifically we present the
use of multiple experts to solve the “fast learning fast for-
getting” problem.

2.1 DAVE

We built DAVE (DARPA Autonomous VEhicle), an early
prototype, for DARPA under a specific mandate: to provide
evidence that end-to-end learning works for autonomous
ground vehicle navigation. As a proof of concept nothing
was hand tuned. Pixels enter directly into a learning ma-
chine and steering directions are the output. After training
on hours of examples of human driving the system masters
an obstacle course better and faster than a human with a
joystick.

In the DAVE project, Yann LeCun in collaboration with
Net-Scale implemented the first use of convolutional nets
for robot vision, and the first demonstration of end-to-end
learning for vision-based obstacle avoidance. We built the
reactive obstacle avoidance system around a convolutional
network and trained to map raw pixel images from two
video cameras directly to desired steering angles provided
by a human driver (LeCun et al., 2005). The project re-
port and a video clip are available at (Net-Scale Technolo-
gies, Inc., 2010). The results from the DAVE project led to
the DARPA LAGR program.

2.2 LAGR: Near-to-far

The goal of the LAGR program was to develop a new
generation of learned perception and control algorithms
for autonomous ground vehicles, and to integrate these
learned algorithms with a highly capable robotic ground
vehicle. FEight teams participated in the program which
went through two phases and lasted from 2005 - 2008.
(DARPA TPTO, 2005-2008)

By combining long-range perception with learned be-
havior, LAGR was setup to make a qualitative break with
the myopic, brittle behavior that characterizes most UGV
autonomous navigation in unstructured environments. To
overcome the difficulty of making an accurate, objec-
tive measure of performance in off-road environments, the
Government Team managing the field tests created a rela-
tive measure: it tested the navigation software by compar-
ing its effectiveness to that of a state-of-the-art, navigation
software running on a standardized vehicle on a series of
varied test courses. (Jackel et al., 2006)

The Net-Scale/NYU LAGR entry used one of the most
ambitious, innovative, and unconventional approaches to
perception and control. It was the entry that most heav-
ily relied on learning and adaptation for its perceptual and
control modules. See Figures (3,6,5)

The Net-Scale/NYU LAGR system demonstrated that it
could accurately detect obstacle and traversable areas at
long range, and that it could adapt to every kind of natu-
ral environment. Like DAVE the main computational net-
work in the Net-Scale/NYU LAGR system uses convolu-
tional networks. The composition of multiple stages that
extract features that are increasingly abstract, increasingly
global, and increasingly invariant to irrelevant variabilities
in the input are the defining characteristic of the convolu-
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tional network architecture. An interesting consequence is
that each obstacle/non-obstacle decision takes a large con-
textual window into account. By learning to reconstruct
unlabeled samples from video log files, the convolutional
network learns to extract useful features extracted in unsu-
pervised fashion. We do no expensive labeling and train the
system off-line on hours of recorded log files.

When the robot operates in a particular environment it
trains a simple classifier on the output of the convolutional
feature extractor. The classifier gets its labels for nearby
objects from the stereo system which categorizes obstacles
based not on their visual appearance but purely on the ge-
ometry of the point cloud generated by the stereo disparity
map. The combination of unsupervised pre-training, su-
pervised off-line learning, and on-line real-time adaptation
proved to be effective. See Figures (3,7,8).

2.3 Multiple Experts

Guided by the field experience we gained during the LAGR
program, the Net-Scale/NYU team has developed a plan
to create a navigation platform. Partially funded through
an Army STTR program we added several elements to
the existing code base. In the final section of this pa-
per we present the Mixture of Experts Classifier which
solves a problem we named “fast learning - fast forget-
ting”. The problem does not exist in short test runs, but
arises on longer “mission length” runs of several hundred
meters when the robot traverses multiple visual environ-
ments. With a single classifier, as we had for the short runs
of the LAGR program, the robot learns to navigate in one
environment. This learning replaces any learning of differ-
ent environments which it might have seen in the past. In
the worst case the robot would have to revisit a previously
explored area in order to re-learn how to navigate in that
environment. We implemented a simple pool of multiple
classifiers, and a system which selects the classifier for the
current environment. This allows the system to maintain
a memory of previously learned environments, and learn
over different time scales.

3. TECHNICAL DETAILS

3.1 DAVE: Obstacle Avoidance With End-to-End
Learning

As an initial exploration into the potential of machine learn-
ing for autonomous ground vehicle navigation for DARPA
we built a vision-based obstacle avoidance system for off-
road mobile robots (LeCun et al., 2005; Net-Scale Tech-
nologies, Inc., 2010). The system consists of a single uni-
fied learning machine which is self-trained to map raw
camera pixels directly to steering angles. No parts are man-
ually designed nor hand tuned. We collected training data
by a human driver to navigate the vehicle in a wide variety
of terrains, weather conditions, lighting conditions, and ob-
stacle types. The robot is a 50cm off-road truck, with two
forward pointing low-cost web-cams (no high-end sensors
are necessary). After training, the learning machine can
detect obstacles and navigate around them in real time at
speeds of 2 m/s. In fact, it outperformed all human drivers
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(a) Typical processing steps of a traditional navigation system. The prepro-
cessing step often includes noise filtering, image rectification and contrast
normalization. The stereo algorithm calculates the disparity between left
and right camera for small image patches to reconstruct a 3-D point cloud
as accurately as possible. The classification step analyzes the point cloud
to classify the terrain into traversable and non-traversable areas. This infor-
mation is then used by the decision making step whether to steer left, right,
or go straight.
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(b) In contrast to the complicated (c) During training the unified
traditions system, DAVE uses a learning machine receives steering
single unified learning machine commands from a human opera-
which maps raw camera pixels di- tor. Learning to map raw pixels to
rectly to steering angles. steering commands.

Figure 1: Comparison of DAVE’s end-to-end learning machine
to a traditional navigation system

who tried to steer the truck manually both in terms of speed
and number of crashes with obstacles. We named the sys-
tem DAVE, for DARPA Autonomous VEhicle.

In comparison, Figure 1(a) shows the typical processing
steps of a traditional navigation system where traditional
teams design and optimize each module individually. For
example, a noise filter in the preprocessing step may try to
eliminate as much noise from the image as possible regard-
less of which type of noise is actually detrimental to the
following processing steps and which isn’t. Likewise, the
stereo algorithm will attempt to reconstruct a 3-D image as
accurately as possible and therefore make itself sensitive to
camera calibration even though the following classification
step may be able to cope with inaccuracy if it was adapted
accordingly.

Figure 1(b) illustrates the single unified learning ma-
chine used by DAVE.

Figure 1(c) shows the unified learning machine during
training. The learning architecture is a 6-layer convolu-
tional network (LeCun et al., 1998) with 3 million con-
nections and 72,000 independent parameters. We collected
training data by recording the actions of a human driver
together with the video data. The human driver remotely
drives the robot straight ahead until the robot encounters a
non-traversable obstacle, then avoids the obstacle by steer-
ing the robot in the appropriate direction. We use the data
at a resolution of 320x240 pixels at 15 frames per second.
We collected a total of 1,500 clips on 17 different days dur-
ing the Winter of 2003/2004 (the sun was low on the hori-
zon). This resulted in a total of about 127,000 individual
pairs of frames. No manual data cleaning took place. We
use 95,000 frame pairs for training and 32,000 for valida-
tion/testing. The training pairs and testing pairs came from
different sequences (and often different locations).

The approach is somewhat reminiscent of the ALVINN
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and MANIAC systems (Pomerleau, 1993; Jochem &
Pomerleau, 1997). The main differences with ALVINN
are: (1) our system uses stereo cameras; (2) we train it for
off-road obstacle avoidance rather than road following; (3)
Our train-able system uses a convolutional network rather
than a traditional fully-connected neural net.

Figure 2: DAVE: Snapshots from the left camera while the robots
drives itself through various environments. The black bar beneath
each image indicates the steering angle produced by the system.

Figure 2 shows snapshots from the robot driving in dif-
ferent environments along with the steering output gener-
ated by the neural network. One can view further infor-
mation and download video clips at (Net-Scale Technolo-
gies, Inc., 2010).

The main motivation for the use of end-to-end learning
is to eliminate the need for hand-crafted heuristics. We
train the whole system on the raw pixel input to produce
the desired training angles directly. We eliminate the need
for feature design and selection, geometry, camera calibra-
tion, and hand-tuning of parameters. Relying on automatic
global optimization of an objective function from massive
amounts of data produces systems that are more robust to
the unpredictable variability of the real world. Another po-
tential benefit of a pure learning-based approach is that the
system can use cues other than stereo disparity to detect ob-
stacles, possibly alleviating the short-sightedness of meth-
ods based purely on stereo matching.

3.2 LAGR: Near-to-far Learning

One of the key successes of the Net-Scale/NYU LAGR pro-
gram was the creation, demonstration and independent val-
idation of the near-to-far learning system. The system is ca-
pable of learning the visual appearance of nearby obstacles,
and extending the recognition of obstacles well beyond the
range of the stereo vision system. It creates navigable maps
of obstacles up to 75m away from the mobile robot greatly
increasing the long range planning capabilities and corrects
the myopic behavior of the mobile robot which relies solely
on 7 to 10m range of the stereo system. See Figure 7.
Near-to-far learning uses a dense stereo system to gather
labels based on geometry and bootstrap a visual classifier.
The stereo system generates a 3d point cloud. We find a
ground-plane in this point-cloud. We label points above
the ground-plane as obstacles. We project the points above
the plane into the plane to create a traversability map for
the close range navigation. The labels derived from the
geometry of the 3D stereo point-cloud identify points in
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the original image as looking like obstacle or looking like
traversable. We extract image patches around these labels
and have the image data and labels which we use to train a
classifier. We train this classifier on-line as the robot drives
constantly adapting to different environments.

This technique is the essential element in making the sys-
tem adaptable to different environments. A stereo vision
system classifies obstacles and traversable areas based on
the 3 dimensional structure which is independent of their
visual aspect. In parallel a convolutions neural network ex-
tracts a distinctive feature vector for every 6x13 pixel patch
in the image.
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Figure 4: Net-Scale/NYU LAGR: Near-to-far flow-chart The
near-to-far learning uses labels from a classical stereo algorithm
to boot-strap the learning of a neural network which provides
long range vision. The stereo provides training labels for image
patches in the robot’s stereo range.

We use the labels from the stereo classifier as a super-
vised signal to train a classifier to discriminate the visual
differences in the form of the extracted feature vectors be-
tween obstacle and traversable areas of the environment.
This classification generalizes to areas well beyond the
stereo range of approximately 10m allowing the robotic
system to “see” obstacles as far away as 75 or 100m.

Two articles in the Journal of Field Robotics describe the
final LAGR system in full detail ref. (Hadsell et al., 2009;
Sermanet et al., 2009). Several conference publications fo-
cus on particular elements of the system ref. (Hadsell et al.,
2008; Sermanet et al., 2008a; Sermanet et al., 2008b).

3.3 Multiple Experts

From long field experience with the online classifier of the
Near-to-Far learner, which we described above, we discov-
ered that the “fast learning” which is so crucial to the adap-
tivity of the system also would result in “fast forgetting” of
environments. This “fast forgetting” would cause problems
observable only on longer range excursions. The system
would cease to recognize environments which it had previ-
ously learned to classify, because the information from the
new environment replaced that from previously learned en-
vironments. For example, after a drive in the forest where
the system learns to make the fine discrimination between
the texture of a dirt path with leaves on it and the thick
leaves to the side of the path, the system would poorly clas-
sify short vs. long grass in an open field which it had pre-
viously perfectly discriminated. The solution was to im-
plement a simple memory, to continue to allow the system
to adapt quickly as that had already proven to be one of
it’s biggest strengths, but to cache sets of weights which
had been previously learned. The system recalls the cached
weights if it sees the same environment again.

We call this a multi-expert system. Instead of a single
on-line classifier, we now have as many classifiers as we
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Figure 3: Net-Scale/NYU LAGR : Overall system architecture. Each layer contains perception, mapping and planning modules (except
for layer 0). From bottom to top, sensors-actuators latency and period increase while resolutions decrease. Layers 1 and 2 are self-centered
while layer 3 is global. Layer 0, also known as control loop, guarantees the flow of motor commands required at 20Hz. We have added
Layer 3 since the LAGR program. Missing from the diagram is a feedback loop from Layer 3 which adds new capabilities including training
using previously seen labels, map registration for additional pose stability and an environment signal for selecting location specific experts.

like. We have a set of default weights which we hold fixed.
Previously we trained them off-line on hours of log footage
to perform best on average over many highly varied envi-
ronments. The current algorithm for initializing the experts
starts them all at these default weights. We train the first ex-
pert on incoming image patches,exactly as we used to train
the single on-line learner. It learns to discriminate between
image patches from the environment in which the robot is
moving.

The first frame in which the current expert does less well
than the fixed default weights is the switch for changing
to a new expert drawn from the pool of initialized experts.
We store the first expert for later retrieval. Upon process-
ing each frame, each expert classifies the patches for which

there are labels from the stereo system. We then use the
best performing expert to classify the whole image. The
patches with labels from the stereo system get added to the
ring buffer which we use to train that classifier. We train
only the best expert on these new patches. This system cre-
ates a set of experts which differentiate themselves by their
ability to classify different environments.

We are working on more intelligent switches for the ex-
perts beyond the current classification of a whole image in
the near range. We will soon have a system which can clas-
sify different areas of an image with different experts. We
want to use an expert trained in the woods to recognize the
woods with the “woods” classifier when it is far away in
the field. This system is hard to test as it requires full hand
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Figure 5: Net-Scale/NYU LAGR : H-Polar Map Two exam-
ples of Left: short range (stereo) obstacle map, and Right: the
long range map. Above each example are the input images to the
system. We overlay the images on the left with a grey fog which
represents the distance to which the system can “see” using only
the short-range stereo system. The online learning system on the
right learns to classify the long-range obstacles in different envi-
ronments.

Figure 6: Net-Scale/NYU LAGR : Qualitative examples of the
success of the long-range classifier in different terrain. Left: RGB
input; middle: training labels; right: classifier output. Green
is traversable, red is obstacle, and pink is foot-line. Notice that
the classifier output in the far right column allows the navigation
system to ’see’ much further.

Figure 7: Net-Scale/NYU LAGR : Aerial plots of comparison
runs of long-range and Baseline systems. This aerial view is
approximately 300 meters wide. The long-range system in blue
identified the large tall-grass area from the beginning and stays
out of trouble while the Baseline system got close to the grass and
got into trouble.

labeling of video log data. In the next section we present
a test we set up to show the effectiveness of the current
Multi-expert system.

3.3.1 Testing the Multiple Experts

We created a test using a store of 16 log files to emulate
the situations in which environments change dramatically.
Running the multi-expert system we would switch log files
every 15 frames.

On average over 6000 frames in 16 different log files the
multi-expert system outperforms the default weights by 7%
and outperforms the on-line-weights by 9%. The on-line
adaptive classifier performs poorly in this setup because we
were specifically looking for a regime to confuse it. If we
stay in a single environment the single classifier can train
properly and match the performance of the current expert.
The problems with a single learner become obvious when
we change environments. A new expert created for this
environment can train quickly because it is learning only
on images patches from this environment. A previously
trained expert which already performs well in this environ-
ment beats the single on-line learner because it is adapted
specifically for that environment.

We present two cases which demonstrate the advantage
of having the online learning system. For comparison we
plot the classification error from three different systems.
First we plot the default weights in black — which we
trained on hundreds of hours of log files to perform as well
as possible on average across all environments. These are
the weights which we use to initialize the other two sys-
tems. They are static and don’t adapt to new environments,
but represent the best we have been able to train across all
environments.

Next we plot the online weights in gray. We initialize
the online weights to the default weights, each new frame
causes and update of these weights. The stereo system la-
bels image patches. We use these labels are to train the
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Figure 8: Net-Scale/NYU LAGR : Aerial plots of comparison
runs of long-range and Baseline systems. This aerial views is
are approximately 300 meters wide. In the top image the robot
travels down a long forest path. Because the path gives strong vi-
sual cues in the near-range as to the direction to take, we expected
the performance to be similar between the Baseline and the long
range systems. But even here the long range vision adds stabil-
ity to the planning making the robots path much more direct and
much less tendency to get stuck in the brush on either side of the
path. In the lower image the robot travels along a road and has the
possibility of going into a cul-de-sac when using only the short
range system can appear to be a more direct path to the goal. The
long-range system sees to the end of the cul-de-sac and correctly
does not enter, and thus makes it to the goal more quickly, more
directly and does not require any manual intervention.

classifier. As the stream of new patches can be variable
and there are often imbalances in the frequency of patches
received for each different class (traversable, obstacle, etc.)
we maintain a ring buffer of recently seen patches on which
we train the classifier.

Finally we plot the performance of the new multi-expert
system. Here we use a different color for each expert. The
multi-expert system is made up of multiple online classi-
fiers in parallel. Each has it’s own ring buffer of recently
seen patches for the environment on which we have asked
it to specialize.

The plots have the frame number on the x-axis and the
error rate (low is better) on the y-axis. To help keep track of
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Figure 9: Multi-expert example 1 Here we see the test system
switch between three environments which the system has seen
multiple times and to which it is already well adapted. We place
images of the different environments above the graph. The first
environment (frames 645-660) has high grass and a forest. The
second (frames 660-675) has a rocky path with red earth, and or-
ange construction fencing. The third (frames 675-690) is a net-
work of paths mowed through the dry brush at SWRI in Texas.
The default weights (black) and the on-line weights (gray) do
pretty well. Though you can see a spike in the error rate of the
online learner each time the environment changes. This spike is
the time needed for the online learner to retrain for this new en-
vironment. We show each expert in a different color. For each
environment an expert is automatically chosen which performs
better than the either the default or the single on-line classifier.
The experts shown as different colors stay stable through each en-
vironment, blue then red then orange, showing good separation
and specialization among the experts.

the variety of environments seen, above each plot we have
put two views of a single frame from the 15 most recently
shown to the classifier. We overlay the labels from the
stereo system on the top image of each frame, the lower im-
age shows the output of the multi-expert classifier. Red is
obstacle. Green is traversable. Purple is the baseline of an
obstacle, which is most useful when planning in the map.
When there are ample labeled windows coming from the
stereo system, the single on-line classifier adapts to a new
environment quickly sometimes in as little as one frame.
When there are few labels coming from stereo, the system
adapts much more slowly because there are no new patches
on which to train.

We completed this work with partial funding from an
Army STTR grant and is fully described in the Final Tech-
nical Report available at (Net-Scale Technologies, Inc.,
2010)
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Figure 10: Multi-expert example 2 Again we see 15 frames at a
time from three different environments. We wish to highlight that
in the middle environment (frames 450-465) the default weights
and the on-line weights perform poorly. This is a difficult situa-
tion, the robot is facing directly into some close range brush. The
stereo is performing poorly giving few labels. The on-line clas-
sifier gets few new labels and thus cannot adapt as the batch of
training samples on which it adapts is full of samples from other
environments. The multiple experts are having trouble, they are
switching between experts, but still far out perform the other two
systems.

4. CONCLUSION

We have presented practical examples and field test results
for applying end-to-end adaptation to autonomous off-road
navigation systems. We have further described a simple
end-to-end system and two key elements from a larger sys-
tem whose performance we evaluate not on any single mod-
ule but on the overall system performance. Based on these
results and our experience, we are convinced that design-
ing systems with adaptation at every level where no single
faulty module can catastrophically affect the overall mis-
sion, will lead to more powerful and robust solutions and
will increase the number of areas where we can apply au-
tonomous robotics technology.
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