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1.  Summary

While the final goal for the government as well as for the private sector is a “a net-
work-centric data strategy that streamlines data discovery and sharing” [1], the im-
plementation of this vision is not a straight forward task. Neither the industry nor 
academia has provided a comprehensive and practical solution for this need. Con-
cepts of grid and cloud computing have emerged in the last ten years as candidates, 
but as it will be shown in this document, their current implementations present sig-
nificant flaws which detriment any serious adoption. Security gaps and lack of inter-
operability are among the most urgent issues which require attention [2].

This document is organized as follows. The first chapter introduces the concepts of 
grid and cloud computing, and compares their implementations. The following chap-
ters explore the main implementations such as Google and Amazon, as well as com-
mercial and academic alternatives. Conclusions are presented at the end.

2.  Introduction

Economies of scale, anywhere access, new forms of collaboration and extended data 
storage are recognized  driving  forces  for  grid  and cloud computing  technologies. 
Both technologies  attempt to address the need for distributed, out-sourced, man-
aged computing resources. 

Grids have been understood as systems with non centralized control, that coordinate 
resources using standard, open and general-purpose protocols and interfaces to de-
liver a “better than the sum of the parts” quality of service [3]. As such, grid comput-
ing  aims  to enable  “organizations  to share  computing  and information  resources 
across departments and organizational boundaries in a secure, highly efficient man-
ner” [4].

Clouds have been recently defined as a large pool of dynamically reconfigurable vir-
tualized  resources,  which  are  easy  to  use  and  access,  exploiting  a  pay-per-use 
model with guaranties supported by customized service level agreements  [5]. This 
translates as “a way [for IT] to increase capacity or add capabilities on the fly with-
out investing in new infrastructure, training new personnel,  or licensing new soft-
ware” [6].  Variations of cloud computing include:

 Software as a Service (SaaS), where applications run in the network and de-
liver to thousands of users through the browser.

 Utility Computing, where memory, storage and computational capacity repre-
sent a virtualized resource pool available over the network.

 Web Services or Service Oriented Architecture (SOA), where APIs are available 
to to exploit functionality over the Internet.

 Platform as a Service (PaaS), where customized applications are deployed, run 
and delivered from a provider's infrastructure.

 Managed  Service  Providers  (MSP),  where  applications  such  as  e-mail  virus 
scanning are managed externally to the IT organization as a service.

Both technologies have adopted distinctive positions. Grid computing has evolved as 
an open, physical rather than virtual, academic outgrown concept. While cloud com-
puting has emerged as a commercial, virtual and user centric concept. Even though 
both technologies attempt to attain the same goal, their approach to resource shar-
ing, virtualization, security, high level services, architecture, software dependencies, 
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scalability, self-management, usability, standardization and quality of service is dif-
ferent, as seen in Table 1.

Table 1: Comparison Grid vs. Cloud Computing1

Grid Computing Cloud Computing

Resource Sharing Fair distribution across orga-
nizations.

Isolation through virtual-
ization.

Resource Heterogeneity Aggregation of heterogeneous hardware and software.

Virtualization At the data and computing re-
sources level, where applica-
tions and data can expand 
over multiple physical re-
sources.

At the hardware and 
software level, where 
one physical resource 
can be used for several 
OS virtualizations. 

Security Through credential delega-
tions

Through isolation (set-
ting up closed virtual en-
vironments).

High Level Services Several offerings such as 
metadata search and data 
transfer.

Lack of them.

Architecture and Soft-
ware Dependencies

Given the abstract layer be-
tween physical resources and 
applications, applications run-
ning on the grid must comply 
with this interface following a 
service oriented architecture.
In addition, applications re-
quire a predefined workflow 
of services, to coordinate the 
jobs performed and their loca-
tion.

Through hardware virtu-
alization applications are 
architecture agnostic 
and domain indepen-
dent.

Workflows are mostly not 
required for the type of 
on-demand deploy-
ments.

Scalability and Self-
Management

Scalability is achieved by in-
creasing number of nodes.
Cross administrative domains 
have presented some difficul-
ties for the self-management 
and automatic reconfiguration 
of grids.

Scalability is achieved by 
also resizing virtualized 
hardware resources.
Self-management and 
automatic reconfigura-
tion is easier since the 
cloud deployments are 
single domain.

Centralized Control Decentralized Centralized

Usability Hard to manage. Easy to manage from 
user's perspective.

Standardization Standardization and interop-
erability under Globus project

Lack for clouds interop-
erability.

Payment Model Rigid Flexible

QoS Guarantees Limited support, often best-
effort only.

Limited support, focused 
on availability and up-
time.

1 Adapted from [5]
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Probably the model  will  evolve as Grid Computing for the Cloud Providers and as 
Cloud Computing for application developers and users. However, independent of this 
evolution, security issues must be addressed for the adoption of these approaches in 
mission critical operations. Data integrity, recovery, privacy, regulatory compliance 
and auditing are some of the areas under risk [7]. Moreover, the service agreements 
provided by the service providers do not offer enough assurances. For example, op-
tions to terminate accounts “for any reason” and “at any time”, or the option of the 
provider to “pre-screen, review, flag, filter, modify, refuse, or remove any content 
from the service” [8].

3.  Google

3.1.  Description

Taking advantage of the Google infrastructure, Google offers the Google's App En-
gine, which allows users write simple applications in Python or Java and store the 
data in Google's database. This framework is not as mature as the Amazon offerings 
[8]. However, their underlying infrastructure that supports Google's massive search 
business is worth describing.

Google's architecture includes the following main elements [9]:

 A hardware infrastructure, which includes in-house rack design, PC-class moth-
erboards,  low-end storage and networking hardware, Linux OS and in-house 
software.

 A distributed and clustered systems infrastructure, which is composed of:

 A scheduling system.

 Google File System (GFS).

 BigTable for data storage.

 MapReduce for data processing.

A typical cluster at Google is shown below:
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3.1.1.  Google Cluster Architecture

Google's software architecture grew out of two basic principles: i) reliability depends 
on software rather than on server-class hardware, and ii) design is adjusted for best 
aggregate request throughput and not for peak server response (response times are 
managed by parallelizing  individual  requests)  [10]. Services are replicated  across 
different machines, and failures are detected and handled automatically. Machines 
are organized in clusters distributed worldwide. Load balancers at different levels 
distribute the work: a geography-based DNS load balancer assigns a cluster to user's 
requests,  and a hardware-based load balancer in each cluster  performs the local 
load balancing. The system has been structured so that most of the data accesses 
are read-only queries and the updates are relatively infrequently, which reduces the 
issues of consistency typically found in general-purpose databases. Finally, parallel-
ism is highly exploited.

3.1.2.  Google File System

The Google File System (GFS) is a scalable distributed file system for large distrib-
uted data-intensive applications. It provides fault tolerance while running on com-
modity hardware, and it delivers high aggregate performance to a large number of 
clients [11]. 

The specific characteristics of GFS reside on its design assumptions:

 The system is built from many inexpensive hardware components that often 
fail. Therefore, monitoring, detection, tolerance and prompt recovery must be 
done on a regular basis.

 The file size distribution in the system is typically from 100MB to multi-GB. Op-
timization is targeted to efficiently handling these large files.

 Two kinds of reads constitute the primary workloads: i) large streaming reads 
and ii) small random reads. In either case, operations should be organized in 
such a way that they can steadily advance through a file. For example, short 
reads are often batched and sorted out before executed.

 Write operations are also part of the workloads, as large, sequential writes that 
append data to files. Once written, files are seldom modified. Small  random 
writes are supported, but not optimized.

 System efficiently supports multiple clients simultaneously appending to the 
same file. Thus, append operation is atomic.

 Priority is set on high sustained bandwidth rather than low latency.

The usual file system operations are supported, and two more have been added to 
deal  specifically  with large  distributed applications:  snapshot and  record append. 
Snapshot creates a copy of a file or a directory tree at low cost. Record append is an 
atomic append operation, where the client specifies only the data, but not the offset.

The main architectural components of GFS are: the GFS cluster and the GFS client. A 
GFS cluster consists of a single master and multiple chunkservers, and is accessed 
by many GFS clients. Files are divided into fixed-size chunks. Each chunk is uniquely 
identified, and its ID is assigned by the master at the time of creation. Chunkservers 
stores chunks locally and read or write chunk data. Each chunk is replicated on mul-
tiple chunk servers. Masters maintain all file system metadata and control system-
wide activities. Only metadata is cached in the clients, which greatly simplifies the 
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implementation.  Finally,  data consistency  has  been relaxed and GFS applications 
must accommodate for it.

3.1.3.  BigTable

BigTable is a distributed storage system for managing structured data of the size of 
petabytes across thousands of servers  [12]. Under different demands of data size 
and latency, BigTable provides a flexible  and high-performance solution for many 
Google products such as web indexing and Google Earth.

BigTable resembles a database, but it does not support a full relational data model. 
This data model was driven by Google's applications, which needed to store large 
collections of web pages and information associated with them. In BigTable, data is 
indexed using row and column names and timestamps for versioning, and is treated 
as uninterpreted strings. Every read or write of data under a single row is atomic, re-
gardless of the different columns  read or written in the row. A row range (called 
tablet) is the unit of distribution and load balancing. Column names are grouped into 
sets  (column  families),  which  form  the  basic  unit  of  access  control.  In  addition, 
BigTable schema parameters let clients dynamically control whether to serve data 
out of memory or disk.

BigTable uses the distributed GFS to store log and data files. It depends on a cluster 
management system for scheduling jobs, managing resources on shared machines, 
dealing  with  machine  failures,  and  monitoring  status.  BigTable  data  is  stored  in 
Google's SSTable file format, which provides a persistent, ordered immutable map 
from names to values. BigTable relies on Chubby [13], a highly-available and persis-
tent distributed lock service, for several tasks: i) to ensure existence of at least one 
active master at any time, ii) to store the bootstrap location of BigTable data, iii) to 
discover tablet servers, iv) to store BigTable schema information, and v) to store ac-
cess  control  lists.  A  Chubby  service  consists  of  five  active  replicas  and uses  the 
Paxos [14] consensus algorithm to keep their consistency in case of failure.

3.1.4.  MapReduce

MapReduce is a programing model and an associated implementation for processing 
and generating large data sets [15]. Users specify a map function that processes a 
key/value pair to generate a set of intermediate key/value pairs, and a reduce func-
tion  that  merges  these  intermediate  values  associated  with  a  intermediate  key. 
Through this programming model, parallelism becomes natural.

3.2.  Lessons Learned

After many years of experience dealing with large data sets, Google learned to oper-
ate with large, distributed and data-intensive  applications.  Early on, they realized 
that it wouldn't be economically feasible to rely on server-class hardware to deploy 
their applications, so they included in their design the concept of software reliability 
and fault tolerance. As valuable as these design principles are, Google was not set to 
address the issues of distributed storage systems over wide area networks. In this 
regard, highly variable bandwidth, untrusted participants, frequent reconfiguration, 
decentralized control and Byzantine fault tolerance are not Google's concerns, but 
they are for a global scale distributed and persistent storage system.
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4.  Amazon

4.1.  Description

Amazon offers two services: Elastic Computing Cloud (EC2) and Simple Storage Ser-
vice (S3). As the name specify, EC2 is for computational resources, while S3 is for 
storage resources.

S3 is supported by a large number of computers distributed across multiple  data 
centers in the US and Europe, and it's expected to offer low data access latency, infi-
nite  data durability  and 99.99% availability2.  Since  its launch,  S3 has  acquired a 
large user base including home users and small businesses to large enterprises [16]. 
It stores over 5 billion objects and handles over 900 million user request per day 
[17].

In S3 data is stored in buckets, at the top level, and within these buckets, in data ob-
jects. Buckets are equivalent to folders or containers, and have a unique global iden-
tifier or name. Every account can have up to 100 buckets. A bucket can store an un-
limited number of data objects, each one containing a name, up to 5GB and meta-
data up to 4KB of user-specified name/value pairs. Data storage and data transfers 
are charged, and no metadata or content-based search capabilities are provided.

Clients authenticate using a public/private key scheme and a keyed-has message 
authentication code (HMAC). Keys are created at the moment of account creation 
and permanently stored at Amazon. Users can download the keys from Amazon's 
website, making Amazon's security model equivalent to a simple password system. 
Finally, access control is specified using access control lists (ACL) at the bucket and 
object levels for up to 100 identities.

S3 support three data access protocols: SOAP, REST and BitTorrent. This latter proto-
col allows for substantial  bandwidth savings if multiple concurrent clients demand 
the same set of objects.

Lastly, data transfers between S3 and EC2 are not charged, allowing to run computa-
tions in EC2 and store and/or retrieve data from S3.

Even though the exact architecture of S3 is not disclosed, there are several refer-
ences, which indicate that elements from Dynamo are used in S3 [18]. Dynamo is a 
highly available, scalable and distributed key-value storage system used by some of 
Amazon's  core services  [19]. To achieve scalability and availability, Dynamo uses 
techniques such as:

 Consistent hashing for data partitioning and replication.

 Object versioning to facilitate consistency.

 Quorum-like techniques and a decentralized replica synchronization protocol to 
maintain consistency among replicas during updates.

 Gossip-based technique and membership protocol to detect failure.

 Mostly automatic decentralized organization, which allows adding and remov-
ing storage nodes without any manual partitioning or redistribution.

It should be noticed that the success from Dynamo partly resides on the focused 
scopes of its requirements:

2 Amazon Web Services http://s3.amazonaws.com
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 A query model  with simple read and write operations to a data item that is 
uniquely identified by a key, and states are stored as binary objects also iden-
tified by unique keys. No operation span multiple data items and there is no 
need for relational schema. Dynamo target to store objects usually less than 
1MB.

 Adequate  compromise  in  ACID (Atomicity,  Consistency,  Isolation,  Durability) 
principles. Dynamo relaxes consistency - “C” - to favor availability.

 Efficiency to constantly achieve the stringent latency and throughput require-
ments,  while  running  on commodity  hardware.  The trade-offs  are in  perfor-
mance, cost efficiency, availability and durability guarantees.

 Dynamo runs internally within Amazon's trusted environment, and thus elimi-
nating any requirements in security associated to authentication and autho-
rization.

4.2.  Lessons Learned

Although Dynamo's architecture may not solve the greater problem of a global-scale 
trusted distributed storage system, its implementation in a real world setting, leaves 
us with several lessons to be learned:

 Focused requirements  that  lead  to  a  simple  architectural  framework,  which 
then can be configured to address variations of the use cases.

 Clear recognition of the trade-offs and use of them to achieve the best user ex-
perience for the use cases at hand.

From a technical point of view, Dynamo's implementation explored strategies in the 
following areas, which are important to keep in mind when designing a large storage 
system:

 Balancing performance and durability.

 Ensuring uniform load distribution.

 Identification of the cause of divergent versions and how to reconcile them.

 Client-driven vs. server-driven coordination.

 Balancing background vs. foreground tasks.

Finally, from a user's perspective, the following table summarizes an evaluation of 
S3 [20], which could be applicable to a global-scale distributed storage system.

Evaluation of S3 for Data Intensive Applications

Data 
Durability

Acceptable, as indicated by non permanent data loss during a pe-
riod of 12 months, with 10,000 files which sizes varied from 1B to 
1GB, and over 137K requests done during that period.

Data 
Availability

From EC2 was high, as indicated by 5 PUT retries , 23 PUT timed-
out, and 5 GET retries out of 107,556 tests. Considering 1MB or 
greater files, the throughput for writes was less than 10KB/s and only 
0.03% was less than 100KB/s.

From S3 was 95.89% without retry and 100% after the 5th retry for 
15,456 downloads to Univ of South Florida.
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Data Access 
Performance

Good availability, variable download time depending on location, file 
size and time of the day, and a fair use of the BitTorrent protocol.

Specifically, from EC2 to S3 for single threads, downloading 1B, S3 
can sustain a maximum of 100 transactions per sec – reflecting a 
dominance by S3 transaction overhead -, while downloading 100 MB, 
the maximum bandwidth was 21 MB/s. Uploading data to S3 was sim-
ilar.

From EC2 to S3 for concurrent threads, as the number of threads in-
creased - to 6 - the per-thread bandwidth decreased but the aggre-
gated bandwidth increased.

For remote access, data bandwidth varies depending on geographical 
location and the time of the day.

Support for 
Security and 
Privacy

Limited because:

 Crude access control scheme, which does not scale well.

 Lack of support for fine-grained delegation.

 Implicit trust; no support for non-reputability (S3 must be 
trusted).

 Unlimited risk: S3 does not offer support for user-specified 
usage limits.

Cost Given Amazon pricing structure, its usage may make sense for the 
costly tasks of high data availability and durability, while caching 
data at the edges of the system should be used to reduce the access 
volume and improve performance. Having said that, its costs for 
global-scale storage is prohibitive.

Usability Given its security model and billing structure, the system is inade-
quate to support complex, collaborative environments.

5.  CleverSafe

5.1.  Description

CleverSafe offers remote storage through a dispersed storage network (dsNet) [21]. 
dsNet uses Information Dispersal Algorithms (IDAs) [22] that allow for forward error 
correction and recovery.

IDAs separate data into unrecognizable slices, which are distributed to different stor-
age devices. No single copy of the data resides in one location, and only a subset of 
the nodes needs to be available to fully retrieve the data. In CleverSafe dsNet, slices 
are distributed, via secure Internet connections, to storage locations in premises or 
throughout the world.

By coding and dispersing information, the reliability, security and efficiency of data 
storage in IDA systems can be vastly improved over traditional replication and par-
ity-based systems.

Data distributed over p storage nodes, where any m of the nodes can fail, would re-
quire a storage overhead of p/(p-m) + ~12% associated with block file device. If p = 
16 and m = 4, the storage overhead would be 1.33 + .12 = 1.45.

In comparison with replication systems, where data is mirrored on n storage devices, 
dsNet offers a more efficient approach to achieve robustness. In our previous exam-
ple, n would be 5, and therefore the storage overhead is 5 compared to 1.45.
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Similarly, dsNet would offer a better solution for storage than the parity-based sys-
tems, such as RAID disks.  While  parity-based systems are less wasteful  than the 
replication systems (where n > 1), they are less reliable, since only one copy can fail 
without data loss.

IDA systems in combination with appropriate monitoring can repair data corrupted or 
destroyed based on inspection of the other uncorrupted slices, thus increasing the 
mean time between failure significantly.

5.1.1.  Current Infrastructure

CleverSafe Dispersed Storage™ (dsNet) contains 3 layers: a Source computer, an Ac-
cesser and  Slicestors for storage as shown in Figure 23:

The dsNet storage network currently has been implemented as a block file device 
with an iSCSI Device interface. Additional interfaces such as NFS, CIFS and CAS have 
been announced.

For the Source device, the dsNet is equivalent to a file system, and the Accesser is 
mounted as a drive to the Source computer.

The  Accesser  software  is  responsible  for  storing  and  retrieving  the  slices  to  the 
Slicestors, as well as for providing the file system-type front end to the source com-
puter.  In addition  the Accesser performs the encoding  and decoding  prior  to the 
slices  distribution.

The Slicestors store the slices produced by the Accessers. 

3 From CleverSafe web-site: http://www.cleversafe.org/dispersed-storage/infrastructure
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5.2.  Lessons Learned

Since its foundation in 2004, CleverSafe has been recognized as an innovative tech-
nology company, which delivers cost effective solutions4, and most certainly their 
strategy for storage makes sense and it seems that they have delivered. However 
the following points should be considered:

 Their focus is storage and not end-to-end security.

 Their technology improves traditional storage systems, but not an elastic stor-
age systems which expands as the demand for storage increases.

 The storage nodes where the data is dispersed are set a-priori and not on-the-
fly as needed for a systems where nodes can be added or removed constantly.

Within the constraints of the problem statement they tried to solve, it seems to work, 
but it does not solve the issue of a global-scale distributed, secure and persistent 
storage system.

6.  OceanStore

6.1.  Description

OceanStore is a global-scale distributed and persistent storage system, built over a 
peer-to-peer infrastructure of untrusted and changing components, where data con-
stantly  moves  to  improve  performance  and  availability  [23].  Data  is  protected 
through redundancy and cryptographic techniques. Servers are active components 
that  participate  in  protocols  for  distributed  consistency  management,  and  even 
though some of them may crash without warning, it's assumed that a number of 
them are working correctly most of the time and can be trusted to carry out these 
protocols and therefore can guarantee quality of service. Performance is improved 
through allowing data caching anywhere, anytime – so called promiscuous caching. 
Moreover, monitoring of usage patterns not only permits adaptation to regional out-
ages and denial of service attacks, but also enhances performance through proac-
tive movement of data.

The persistent object is the fundamental  unit. Each object is named by a globally 
unique identifier (GUID). Objects are replicated and stored in multiple servers. Since 
a given replica is independent of the server on which it resides at any given time, 
they are called floating replicas. A replica is located through: i) a fast, probabilistic 
algorithm applied near the requesting machine, and ii) a slower, deterministic algo-
rithm.  This  location  algorithm is  called  decentralized  object  location  and  routing 
(DOLR). Objects are modified through updates, which create a new version, and pro-
vide the mechanism for consistency. Objects exist in both active (the latest version 
with a handle for update, floating replica) and archival (permanent, read-only ver-
sion) forms. Archival  versions are encoded with an erasure code and spread over 
hundreds of servers. Write applications interact with the system through a number 
of sessions guaranties in the style of the Bayou system [24], dictating the level of 
consistency from extremely loose to ACID (Atomicity, Consistency, Isolation, Durabil-
ity) semantics.

Pond [25] was the prototype of OceanStore, deployed on PlanetLab employing over 
200 machines at 100 sites. Its implementation included most of the features of a 
complete system such as: location-independent routing, Byzantine update commit-

4 http://www.cleversafe.com/news-reviews/reviews
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ment, push-base update of cached copies through an overlay multicast network, and 
continuous archiving to erasure-coded form. Compared to NFS, Pond outperformed it 
by a factor of 4.6 in read-intensive phases, but underperformed by 7.3 on write in-
tensive phases, mainly limited by the speed of erasure coding and threshold signa-
ture generation.

OceanStore's initial architecture was quite ambitious and its implementation showed 
its limitations. However the issues it was designed to address are still very pressing 
to resolve.

6.2.  Lessons Learned

After several years of implementing the concepts laid out in the original design from 
OceanStore, Kubiatowicz reflected on the lessons learned and pointed out four main 
problems [26]:

1. In practice, DOLR showed to be unstable, where nodes might be lost and never 
reintegrate, and routing state might become stale or be lost. This was caused by 
the complexity of the algorithms and, in hindsight, a wrong design paradigm.  As 
a result a new, simpler, targeted design, Bamboo, showed to be more stable and 
with better bandwidth utilization [27], [28].

2. Write latencies resulted to be very large. For small files, signature dominates the 
timing,  while  for  large  files  encoding  becomes  dominant.  Realistic  alternatives 
have not been found.

3. Efficiency for information retrieval turned out to be problematic. Small blocks of 
data spread out widely with every block of every file residing on a different set of 
servers. The suggested solution involved a two-level naming, placing the data in 
larger chunks, and accessing blocks by name within a chunk. This is realized in 
the Antiquity prototype [29].

4. The complexity of the algorithms combined with a reactive approach to fix imple-
mentation problems made it difficult to address the implementation issues. As a 
lesson learned, it's better to keep in mind the vision and address the issues as 
part of the design, instead of performing incremental improvements.

Kubiatowicz also mentioned other issues such as: i) high cost of archival repair, ii) 
resource management for denial of service or over utilization of storage nodes, iii) 
complexity  with  Byzantine  agreement,  distribution  of  key  generation  and  access 
control at the level of the inner rings, iv) handling of low-bandwidth links and partial 
disconnection, and v) better replica placement.

Finally, secure and efficient sharing was not addressed. Thoughts on cryptographic 
hardware for revocation  in  the network do not seem realistic.  The use of  crypto-
graphic links seems to offer a more practical approach.

These reflexions, even though they are not complete, provide a valuable guidance 
for the future of implementing and deploying such a system, and prove that after al-
most 10 years of research and experimentation, the problem of secure, persistent, of 
global-scale, distributed storage is still not solved.
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7.  Other Examples

7.1.  Wikipedia

Since its origins in 2001 as a Perl CGI script running on a single server, Wikipedia 
has grown into a distributed platform with three data centers (Tampa, Amsterdam 
and Seoul)  and 350 servers,  managed  by 6 persons.  Performance and efficiency 
have been prioritized over high availability and security of operation [30]. The main 
components are:

 Linux for operating system (Fedora and Ubuntu)

 PowerDNS for geo-based request distribution

 Linux Virtual Service (LVS) for efficient load balancing i) in front of the Content 
Distribution Network (CDN), ii) between the CDN and Application, and iii) be-
tween Application and Search.

 Squid for content acceleration and distribution.

 lighttpd for static file serving

 Apache for application HTTP server

 PHP5 for core language

 MySQL for Database

 MediaWiki is the main application and it was developed in-house.

 Lucene and Mono for search engine.

 Memcached for various object caching.

The interaction of these components are shown in Figure 3 [31].
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7.2.  Akamai Technologies

Akamai  Technologies  offers a distributed content delivery system, which expands 
over 15,000 servers deployed on 1,200+ networks in 60+ countries [32]. By caching 
content at the Internet's edge, it reduces demand on content providers' infrastruc-
ture and provides faster service to users [33]. Akamai's infrastructure distributes re-
sources by allocating more servers to the sites experiencing higher loads, while serv-
ing clients' requests from the nearest available server likely to have the requested 
content. Nearest is a function of network topology and dynamic link characteristics. 
Availability is a function of load and network bandwidth. Likely is a function of the 
servers carrying the content for each customer in the data center. Though mapping 
technology using border gateway protocol (BGP) information to determine network 
topology, the Akamai system directs requests to content servers, employing a dy-
namic,  fault-tolerant DNS system. Server name resolution depends  on service re-
quested, server health, server load, network condition, client location and content 
requested.

This DNS-based load balancing system continuously monitors the state of services, 
and their servers and networks. This information is collected at the Network Opera-
tions Command Center (NOCC), from where corrective actions are dispatched if nec-
essary. The system's end-to-end health is registered by agents simulating end-user 
downloading web content and measuring their failure rates and times.

Akamai servers deliver static and dynamic content as well as streaming of audio and 
video. Dynamic content is cached using Edge Side Includes technology, which let 
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content providers break a dynamic page into pieces with independent cacheability 
properties. This reduced bandwidth by 95 to 99 % of the sites studied.

More recently, Akamai provided a distributed application platform (EdgeComputing) 
[34] where enterprise business web applications can be deployed. This involves vir-
tualizing system resources and allocating them dynamically to different applications. 
To use EdgeComputing, a site developer must split the application into: i) an edge 
component (deployed in Akamai  edge network), and ii)  an origin  component  (de-
ployed within the central data center as it traditionally would). Thus, the best suited 
split is to deploy the presentation components of an application onto the Akamai 
edge servers and to cache access to original data. In addition, the EdgeComputing 
platform provides caching mechanisms for persistent application data to minimize 
the interaction and load on the originating infrastructure on a request-by-request ba-
sis, and an IBM Java Cloudscape database management system to host infrequently 
changing, read-only data in an edge database. 

7.3.  CoDeeN Content Distribution Network

CoDeeN is an academic Content Distribution Network (CDN) built on top of PlanetLab 
to provide a fast and robust web content delivery service to its users. It consists of a 
network of high-performance proxy servers, which behave both as request redirec-
tors and server surrogates [35].

In contrast to commercial  CDNs which operate in a transparent way to end users, 
CoDeeN engages these users making the system demand-driven. Clients configure 
their browsers to use a CoDeeN node, which acts as a forward proxy. Cache misses 
are deterministically hashed and redirected to another CoDeeN proxy, which acts as 
a reverse-mode proxy, concentrating requests for a particular URL. Thus, fewer re-
quests are forwarded to the original site.

Running on PlanetLab, CoDeeN does not operate on dedicated nodes with reliable 
resources,  and  its  distributed  in  nature.  Thus,  CoDeeN  includes  significant  node 
health monitoring facilities. Also, for its operation, CoDeeN added several  security 
policies based on the client IP addresses, which involved rate limiting and privilege 
separation.

Recently HashCache has been developed as a configurable cache storage engine, 
which uses 6 to 20 times less memory than current network cache techniques and 
offers comparable or better performance [36]. The design criteria for HashCache in-
cludes: i) removing the in-memory index, ii) controlling collisions, iii) avoiding seeks 
for cache misses, iv) optimizing cache writes and v) prefetching cache reads. Cur-
rently HashCache is deployed at two locations in Africa, showing significant memory 
and CPU usage reduction compared to Squid.

7.4.  PlanetLab

PlanetLab is a global  platform for deploying and evaluating network services  [37]. 
Since  its origins  in  2002,  a set of  100 machines  distributed over 40 sites,  it  has 
grown to 694 machines over 335 sites. This distributed system supports a series of 
large-scale  network  services  such  as  content  distribution,  anycast,  DHTs,  robust 
DNS, large-file distribution and others.

PlanetLab operates through distributed virtualization, where each service runs in a 
slice  (network-wide  container)  of  the  global  resources.  These  slices  are  created 
through  operations  available  on  a  centralized  front-end,  that  communicates  re-
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motely with local node managers to establish and control virtual machines on each 
node. A set of these virtual machines defines a slice.

One of the design principles of PlanetLab included the concept of unbundled man-
agement, which consisted of managing the system through services deployed onto 
slices like any other service. While this concept fostered evolution and extensibility 
of its functionality, its implementation coped with the challenges of provisioning for 
the adequate trust mechanisms, the appropriate resource allocation, and slice isola-
tion yet allowing some slices to manage others.

The trust model depends on the functionality of the centralized front-end called Plan-
etLab Central (PLC), where the node owners trust PLC to manage the behavior of the 
virtual machines running on them, and the users trust PLC to provide them access to 
the nodes to run their services. The security of this model is enforced by traditional 
authentication mechanisms from the nodes to the boot server running at PLC, and 
by off-line vetting mechanisms to ensure the identity of the users who can create ac-
counts and then upload their private keys. PLC then installs these keys in the virtual 
machines it create for that user for him or her to connect via SSH. In addition, audit-
ing services record all the network  traffic flowing out of the nodes, which allow node 
owners to monitor and determine the origin of any unwanted traffic.

The resource allocation is decoupled from the slice creation. Thus, virtual machines 
are created irrespective of available resources, but during run time they are given a 
fair share of the obtainable resources. With this, there are slice creation services and 
brokerage services, which can be of the type market-based for buying and selling re-
sources or scheduled-based.

In order to facilitate growth, interoperability of multiple independent PlanetLab-like 
systems should be possible. This was achieved by providing well-defined interfaces 
by which independent PLC invoke operations on each others.

In summary the experience from PlanetLab provided not only the design but also a 
stable and operational infrastructure for planet-large scale and distributed platform.

8.  Conclusions

As pointed out by Nelson [38], the Internet is entering an exciting third phase, where 
it's becoming a platform for computing as well as communications. The overview of 
the different implementations described in this paper corroborate this assessment. 
However these island solutions or failed attempts do not solve the bigger issue of a 
global-scale distributed and persistent storage system.

As seen by Google, Amazon, Akamai and Wikipedia, they set to address very con-
fined requirements for large distributed data-intense system, but untrusted partici-
pants or untrusted components or highly variable bandwidth or decentralized control 
or persistence beyond the life of their own companies were not considered.

OceanStore set its goal in this direction, but run into obstacles on the design and im-
plementation side. 

In summary, the main conclusions from this review are:

 For the design and implementation phase, the requirements and assumptions 
must be clear and as concise as possible.
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 The framework for development must be well  structured and robust. Failure 
detection and system recovery must be built into the system from the ground-
up.

 A system has to be able to expand and be able to incorporate new technolo-
gies.

 Security, decentralized control and persistence over many generations are still 
a challenge.
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