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Abstract 

Autonomous ground vehicle control has vast commercial and military potential bene-
fits but the performance of current systems is not sufficiently robust to allow de-
ployment. Of particular difficulty is dealing with unknown environments, noisy sensor 
data and self-learning to optimize performance while driving. Advances in machine 
learning for pattern recognition, control problems, and, in particular, end-to-end 
learning promise improvements in these areas. The purpose of this project was to 
perform a short term and strongly focused effort to explore the benefits of end-to-
end machine learning for this application. A test vehicle was built, consisting of a 
commercially available radio controlled model truck which was equipped with two 
light weight video cameras and other sensors. The vehicle’s task was to drive on un-
known open terrain while avoiding any obstacles such as rocks, trees, ditches, and 
ponds. The entire task was learned by the machine from examples. No hand de-
signed algorithms have been used nor has the resulting network been hand tweaked 
in any way. The trained vehicle was able to successfully navigate through complex 
and tight paths between obstacles. A skill which in one case a human driver could 
not repeat even after multiple tries. The entire project was carried out in seven 
months by a team of three to seven people with a total hardware cost of about 
$30,000 including the vehicle, sensors, remote control and training and data storage 
computers. 
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1. Introduction 

It is not hard to explain the potential benefits of autonomous vehicle control for both, 
military and commercial applications. The benefits range from finding and assist ing 
victims of an earthquake or on the battlefield, or operate in dangerous environments 
such as mine fields, to exploring foreign planets. It is therefore a widely studied field 
but practical applications are still very limited. A number of tasks are part icularly dif-
ficult for traditional autonomous vehicle control, for example, 

¿ Dealing with changing environments or operating in new and unknown env i-
ronments. 

¿ Learning while in operation or on a mission. This means being able to auto-
matically vary a given approach to a new problem and when successful, learn 
from it so the knowledge can be put to use for similar situations in the future. 

¿ Dealing with noisy and nonideal sensor data. 

¿ Dealing with changing environments and environmental conditions such as 
lighting. 

¿ Reconfiguring a system to operate for a different application or goal. This 
typically involves time consuming and expensive hand tweaking of the algo-
rithms by human experts. 

The idea of applying machine learning to the task promises to provide better solu-
tions, in particular for the above problems. Machine learning is not a new field and 
other attempts have been made in the past to apply it to autonomous vehicle control 
(see for example [1], [2]). However, advances in machine learning for pattern rec-
ognition, control problems, and, in particular, end-to-end learning combined with the 
increased memory and processing power of today’s computer systems promise a po-
tential breakthrough. To understand the current state-of-the-art better and to help 
optimize future research grants in this area, DARPA-IPTO conducted this short term 
and strongly focused effort to evaluate the above promise. 

Machine learning promises two particular benefits: 

¿ Learning from example which can be used to retrain a vehicle to a changing 
environment without requiring any algorithm tweaking by human experts. 

¿ Relearning while in operation to fine tune the performance and to potentially 
learn how to cope with new and previously unknown situations. 

In this project we have chosen to use a commercially available radio controlled 
model truck as the vehicle which we equipped with two lightweight and low cost 
video cameras. Compared to the more expensive and high quality hardware typically 
used for such research this approach is very low coast. We did not have to worry 
about loosing the vehicle and could therefore make more aggressive driving experi-
ments. Furthermore, the vehicle is relatively easy to reproduce and could in principle 
be used by many different small research teams. Furthermore, the whole setup is 
small enough to fit into a car and can be setup and operated by a single person. This 
provided for a very flexible environment for data collection and test runs. Finally, due 
to the low cost nature of the sensors and wireless data transmission hardware, the 
network was forced to deal with less than perfect sensor data. 

The organization of the project was as follows. First the vehicle hardware was pur-
chased and modified and then integrated with the network training environment 
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(Lush). Several weeks of data collection by a human driver followed after which the 
first training experiments were conducted. The initial training experiments with su-
pervised learning were conducted off-line by the computer. The trained network was 
then installed on the computer which remote-controls the vehicle to conduct real 
outdoor test runs. In a later phase, the vehicle would collect new training data while 
it was driving itself with the previously trained network. A human driver was still pre-
sent but would only override the network driving if the network made really bad de-
cisions. The additional training data was used to retrain the network using rein-
forcement learning. Throughout the whole project the vehicle hardware and sensor 
data transmission was constantly being improved based on the field experience and 
data collection continued. The training data collected therefore continued to improve 
in quality. Of course, it would be preferred to use only training data of the highest 
quality but the time frame of the project did not allow to collect a sufficient amount 
of such data. 

Supervised learning worked surprisingly well, especially when considering the poor 
quality sensor data. Reinforcement learning worked as well but did not show signifi-
cant improvements over supervised learning. It is expected that sensor quality and 
small amount of available training data contributed to this result and one cannot 
necessarily conclude that reinforcement learning brings no advantage. 

The input data presented to the network came directly from the sensors. No pre-
processing other than subsampling the input images was performed. The network 
output was interpreted directly as steering wheel angle of the vehicle. No traditional 
processing algorithm was used nor were any weights of the network hand tweaked. 
The entire learning process was fully automatic with no human interaction and solely 
based on the available training data. 

2. Training And Test Environment 

The goals for the vehicle included not to use GPS because it does not work reliably in 
wooded areas and to drive entirely autonomously without any communication to a 
home base because such communication could be detected or disrupted by the en-
emy. Note, that this project depended heavily on wireless data exchange but only 
because the vehicle was too small to carry the computers and necessary power 
sources. 

Figure 1 shows the training environment. It consists of an area of outdoor terrain in 
the size of about 50 × 50m, limited only by the range of the wireless data transmis-
sion. It is in open outdoor terrain and contains arbitrary natural and man made ob-
stacles for the vehicle, such as trees, rocks, and walls. The goal is for the vehicle to 
run in an outdoor area which it has never previously seen, keep running in one direc-
tion but drive around any obstacles. 
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~50m

~50m

 

Figure 1. The “Playground” consists of an area of outdoor terrain in the size of about 
50 × 50m. It is in open outdoor terrain and contains arbitrary natural and man made 
obstacles for the vehicle, such as trees, rocks, and walls. 

3. Vehicle Hardware 

3.1. Overview 

The hardware for this project comprises several elements summarized in Figure 2. A 
remote-controlled vehicle collects sensory data (video, position and distance to ob-
jects) and transmits the collected data back to a PC workstation. The vehicle is 
driven using a joystick, whose actions are recorded by the PC program and sent to 
the vehicle via a custom module (see Section 3.5 for more details). 

 

PCI
Video capture card

PCI
Video capture card

USB port

Port1

RS232 Port

Port 2

900Mhz video
receiver

900Mhz video
receiver

PC-to-Radio 
Custom Module 

(M1)

Abacom RTcom
RS232

RX (receiver)

Joystick

Camera Camera

Radio Control
receiver

Telemetry Sensors
And Transmitter
Custom Module

(M2)

418Mhz, FM

72Mhz FM

900Mhz, Chan. 4

900Mhz, Chan. 3

PC

Truck

900Mhz video
trasmitter

900Mhz video
trasmitter

 
Figure 2. The overall architecture of the Autonomous Vehicle System. The sub-
module M1 is described in Section 3.5 and M2 in Section 3.4. 
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3.2. The Vehicle 

The vehicle built for this project was nicknamed DAVE, for DARPA Autonomous Vehi-
cle. The design for DAVE arose from the following constraints:  

• Must be off-road capable. 

• Must be able to carry a payload of at least 2 lbs. 

• Must be built from off-the-shelves components to keep cost low. 

Chassis 

For the chassis, we used a commercially available 1/10th scale electric remote-
controlled ‘Monster Truck’. Figure 3 shows a view of the chassis. 

 

 

Figure 3. The chassis of the E-MAXX 1/10th scale 4WD Monster Truck from Traxxas 
(www.traxxas.com). 

The Chassis is ideally designed to accommodate onboard electronics for sensory in-
puts. The chassis is 19 inches long (bumper-to-bumper), 16 inches wide (edge of 
tires) and 9 inches high (floor to posts, suspensions up).  

Replacing The Remote Control And Receiver 

To our knowledge, no off-the-shelve system exists that allows a PC program to con-
trol such a remote-controlled vehicle. One of the components of our custom interface 
system is an airplane remote that features a “trainer input” (these are used to train 
students to fly remote-controlled airplanes with a teacher being able to take control 
of the student’s remote via a cable connecting the two remotes). Unfortunately the 
remote coming with the truck does not have such a capability and hence has to be 
replaced. The two remotes operate on different frequencies and hence the receiver 
on the vehicle has to be replaced as well. The receiver of the airplane remote is lar-
ger and does not fit inside the chassis in the same spot as the vehicle receiver. 
Figure 4 shows the two receivers and the assembly used to house the new receiver.  

A piece of styrene is screwed on the chassis using the two holes visible on the right 
side of the original receiver. The new receiver is attached to the plate using Velcro. 
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Figure 4. The original receiver (left) functions on the 27Mhz band and needs to be 
replaced by the receiver of the airplane remote (right). 

Shielding the receiver 

Experience has shown that the airplane receiver is prone to interference from both 
the motors and the wireless video transmitters. We have been using aluminum foil to 
provide adequate shielding. Aluminum foil is folded to make a 10-layer thick insula-
tion that is wrapped around the receiver, letting only the servo and antenna cables 
stick out. 

Changing The Gear Ratio to Slow Down the Vehicle 

These ‘Monster Truck’ vehicles are designed for speed. They can go as fast as 
30 mph. In our application, we rather need the vehicle to go at slow speeds (order 1-
2 feet per second). To achieve this kind of speed the gear ratio needs to be changed 
from the default gear that comes with the vehicle. Figure 5 shows a view of the in-
side of the gearbox. Both the pinions and the spur gear can be purchased from the 
same manufacturer.  

 

 

Figure 5. The E-Maxx gear box. 

Factory installed is an 18 teeth pinion with a 66 teeth gear. We replaced them with a 
12T pinion and 72T gear, providing a 66% decrease in speed (factor 1.6 slower). To 
change the pinions and gear, remove the gear cover and unscrew the pinions. The 
1.5mm L-wrench provided by Traxxas might not be strong enough, buy a high qual-
ity reinforced wrench (e.g. by Bondhus). Next, remove the spur gear. Remember the 
position of the nut before unscrewing it. Transfer the clutch pegs to the new gear 
and reassemble. Try not to touch the pinion screws so as not to transfer oil onto 
them, which will make it more likely the come out during operation. 



Autonomous Off-Road Vehicle Control DARPA-IPTO Version: 1.3  
Final Technical Report Arlington, VA July 30, 2004 
 

  
Page 10 of 55 

Box Housing For Onboard Electronics 

A sturdy box was built out of 1/8th inch styrene plastic, reinforced with brass angles. 
The box is attached to the chassis using the four poles visible in the picture of Figure 
3. Styrene is easy to cut and glue. The brass angles are cut to fit all angles of the 
box, while the plastic makes the walls of the box. The assembly is screwed together 
using six small (5-52) screws and nuts per face of the box. The front windshield is 
made out of clear Lexan to allow the camera to be positioned inside the box. Care 
must be taken that the camera lenses do not touch the Lexan, because this would 
result in the glass of the lenses eventually scratching the (less hard) Lexan and blur-
ring the center of the image. The box (see Figure 6) has the following dimensions: 
length: 15’’, width: 8’’, height: 3’’. The raw sheet of styrene measures 21 x 8 inches, 
hence the width of 8 inches. The box was dimensioned and positioned so as to give a 
2-inche clearance between the bumpers and the edges of the box to avoid the box 
being directly hit in collisions. 

 

 
Figure 6. View of the Box housing the onboard sensory electronics. 

 
Figure 7. The inside of the vehicle’s box housing the cameras, wireless video trans-
mitters and sensors. 

To minimize interference between motors, wireless transmitters and the vehicle re-
ceiver, the box is shielded using a layer of self-stick aluminum tape. Figure 7 shows 
a view of the inside of the box. 
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3.3. Stereo Cameras and Video Transmitters 

Cameras 

In order to provide good quality images, we stayed away from pinhole type lenses as 
well as CMOS imagers. Also, most of the cheap CMOS, pinhole-style cameras have 
no good automatic backlight compensation, resulting in the image dramatically 
darkening as a bright spot appears. Another important factor is the availability of 
wide-angle lenses. For navigation, the robot needs at least a 100-degree field of 
view. Most small CCD cameras have 1/3 inches CCD (measured diagonally), hence 
the camera lens must be a maximum of 2.5mm focal length. 

Mount For Cameras 

The two cameras need to be mounted on a separate assembly, so that the entire as-
sembly can be removed from the box without having the cameras move relative to 
each other. This is necessary because the network must be able to learn to extract 
3-D information from the stereo view provided by the two cameras. If the cameras 
would move relative to each other, the network would have to relearn their geometry 
and the previously collected data could not be used anymore. Figure 8 shows the as-
sembly that holds the cameras and Figure 9, the two cameras on their mount inside 
the box. Specific dimensions of the assembly can be found in Appendix 11.6. 

 

 

Figure 8. The mount for the stereo cameras. 

 

 

Figure 9. The two cameras mounted. 

Wireless Video Transmitters 

Off-the-shelve video transmitters are available at different frequencies. An initial 
choice of the 2.4-Ghz band proved unsuitable for the vehicle because of frequent 
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dropouts in the video as the vehicle was moving. A second implementation using the 
900-Mhz band resulted in more stable video, albeit still showing occasional dropouts. 
Quality was later improved using a larger antenna for the receiver. Another con-
straint in the choice of these video transmitters was the need for two separate chan-
nels to transmit the video from the two cameras. Most 900-Mhz video transmitters 
are locked into channel 1 of that spectrum, however some companies sell transmit-
ters operating on 4 channels, this needs to be verified before ordering the parts. 
Video transmitters are available in a range of power from 100 mW to 1 W. We struck 
a compromise between power consumption and transmission range and chose 
500 mW. The video transmitters are attached to the back of the vehicle’s box.  

 

 
Figure 10. One of the wireless video transmitters. 

Figure 10 shows how the antenna sticks out of the box, while the body of the trans-
mitter is inside. A single hole drilled in the box allows the screwed-in antenna to se-
cure the transmitter to the box. A schematic showing how the transmitters and cam-
eras are connected is shown in Appendix 11.4. 

Power Supply 

The total power consumption of the onboard electronics is about 15 W at 14.4 V. 
Power for the onboard electronics comes from the battery packs of the vehicle. Each 
pack supplies 7.2 V (6 cells of 1.2 V each). There are 2 packs, thus providing 14.4 V. 
The cameras and video transmitters need a regulated 12 V supply. Hence the need 
for the assembly shown in Figure 11. It contains two voltage regulators and assoc i-
ated electronics. Two radiators are attached to the regulators to avoid over-heating. 
A detailed schematic of the power supply can be found in Appendix 11.4. 
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Figure 11. The Regulated power supply assembly for the onboard sensory electron-
ics. 

3.4. Compass, Tilt and Distance Sensors 

A variety of sensors can be connected to the vehicle. A micro controller takes meas-
urements from the installed sensors, makes necessary conversions and sends the 
data stream wirelessly to the PC. We chose to implement a compass, tilt and dis-
tance sensors to provide the network with feedback during the unsupervised learning 
phase. The schematics for the onboard sensors can be found in Appendix 11.4. The 
program listing for the micro controller can be found in Appendix 11.1. Figure 12 
shows a view of the micro controller board with the sensor cables attached to the 
breadboard area. As a micro controller we use the BS2SX Basic Stamp from Parallax 
Inc. We use a convenient development board [7] featuring a breadboard area, a 5-V 
voltage regulator and a serial RS232 connector, also available from parallax. 

 

 

Figure 12. The micro controller boards used to read sensors. 

To transmit the sensor readings, a wireless RS232 link is used. We use the RTcom-
RS232 (Rx/Tx) from Abacom Technologies [6]. This board has a female DB9 connec-
tor and can be attached to the female DB9 connector of the micro controller board 
using a DB9 gender changer as shown on Figure 13. 
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Figure 13. Connection between the micro controller board and the wireless RS232 
transmitter board. 

Digital Compass 

An initial experiment with an analog compass (1525) proved disappointing, showing 
very erratic readings. We do not recommend the use of this compass. A very effec-
tive solution for digital compassing is the HMR3100 from Honeywell [3]. It uses two 
solid state magnetic sensors and provides very stable readings. Because the motors 
of the vehicle create a magnetic field, care has to be taken to place the compass far 
enough so that interference is minimized. We found that a distance of 9 inches from 
the motors provided stable readings on the compass. 

 

 
Figure 14. The assembly housing the digital compass. 

We built an assembly from styrene pieces to allow the compass to be positioned in 
the back of the vehicle, about 9 inches from the motors. To shield the compass elec-
tronics from the elements the assembly was enclosed with black electric tape (see 
Figure 14). 

Tilt Sensors 

The tilt sensors are implemented with a Memsic 2125. It provides dual axis tilt sens-
ing using a thermal accelerometer. The tilt sensor is connected directly to the bread-
board area of the micro controller board (see schematics in Appendix 11.4) and 
Figure 12 above. The tilt is obtained from the following equation: ax = arcsine(x/g), 
ay=arcsine(y/g) where x,y are the readings from the chip and g the gravitational 
force. Refer to [5] for more details. 
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Distance Sensor 

The distance sensors are implemented by two Devantech SRF04 Ultrasonic Range 
Finders [4]. They are attached under the front part of the vehicle box using a right-
angle assembly built out of styrene plastic pieces glued together (use cyanocrylate). 

 

 
Figure 15. The two ultrasonic range finders. 

These range finders have a cone of detection of about 30 degrees. Care has to be 
taken that they do not point towards the floor so as not to detect grass and minor 
ground objects. In our experience, a slight upward tilt (5 degrees) decreases the oc-
currence of false positives. To increase the field of view, the two assemblies are in-
stalled at an angle (about 15 degrees). 

3.5. Human Driving Interface 

In order to capture a user’s input actions on the PC workstation when driving the ve-
hicle (training phase) and let the PC drive the vehicle (reinforcement learning 
phase), the following human driving interface has been designed. The trainer, sitting 
at the workstation is wearing video goggles which display the video transmitted by 
the vehicle. He or she can drive the vehicle as one would drive a car, seeing what 
the vehicle sees, which is much easier than driving by direct sight. The trainer uses 
an off-the-shelve joystick (for example Logitech Wingman Extreme) to command the 
vehicle. The joystick is connected to the PC workstation via the game port or alterna-
tively the USB bus. The capture program reads events from the joystick port, stores 
them into files and passes them back out to the vehicle. No off-the-shelve compo-
nent exist (to our knowledge) to control remotely such a vehicle from a PC, we built 
a custom interface. Detailed schematics of this interface can be found in Appen-
dix 11.2. The main component of this interface is a Basic Stamp micro controller 
board. This is the same micro controller platform as described in Section 3.4 (a 
BS2SX Basic Stamp together with a Board of Education (BOE)). The micro controller 
reads data sent to its serial port from the PC and transforms the bytes representing 
position of the steering and the throttle into a train of pulses that the remote control 
of the vehicle understands. We use a Futaba 4YF Airplane Remote [8]. The format of 
that train of pulses is called PPM for Pulse-Position-Modulation. Figure 16 shows an 
example of such a signal. 
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Figure 16. PPM train of pulses. 

The Basic Stamp is uniquely suited to generate such signals. Its BASIC language has 
specific a instruction (PULSOUT) to create a pulse of a given length on one of its out-
put pins. The listing of the program can be found in Appendix 11.2. The signal is sent 
to the remote via a ‘trainer’ cable which connects to the back of the remote and can 
be switched on via a toggle switch (see Figure 17). 

 

    
Figure 17. Trainer cord switch and connector on the Futaba 4YF airplane remote. 

Note that this remote has evolved from the version we initially used. Instead of the 
toggle switch, only a push-button was present, making it necessary to actually re-
place it with a toggle switch. This new revision of the remote makes this step unnec-
essary. However, the format of the trainer cord connector has changed and hence a 
new trainer cord needs to be purchased. To connect the trainer cord to the micro co-
ntroller board, we simply hack it and solder connectors (see Figure 18). 

 

   

Figure 18. The hacked trainer cord and the connectors used to connect it to the BOE 
(Radio Shack: 25-Pin Male Crimp-Style D-Sub Connector #276-1429). 

The signal needs to be amplified to safely travel the length of the trainer cable. We 
use a simple amplifier based on a single NPN transistor (see the schematic in Appen-
dix 11.2 for details, and Figure 19). 
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Figure 19. A picture of the micro controller board with the attached trainer cable go-
ing to the Futaba remote. 

3.6. Wireless Sensors Receiver 

The receiver for the sensors is a 418-Mhz Abacom RTcomRs232Rx [6]. It is con-
nected to the PC via a crossed-over serial cable. Additionally, it needs to be powered 
through the serial cable (which is not standard on PCs). Hence the cable has to be 
hacked to supply power. Additionally, to increase the range, we used a special an-
tenna (GP-433-BNC) that can be connected to the receiver (soldering needed). The 
length of the cable between the antenna and the receiver should be kept as short as 
possible. Figure 20 shows a picture of the box housing both the wireless receiver and 
the vehicle remote control interface. 

 

 
Figure 20. picture of the box that houses both the wireless receiver for the sensors 
and the PC-to-remote interface. 
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3.7. Wireless Video Receivers 

The video transmitted from the vehicle is received on the PC by two (one for each 
channel) 900-Mhz video receivers (see Figure 21 and [9]). Each video output is con-
nected to a video capture board [10] (For Linux compliance, a good choice is a video 
capture card that has the Brooktree BT-848 or BT-878 chipsets, an example of such 
board is shown on Figure 21).  

  

Figure 21. 4 Channel 900-Mhz video receiver (left) and video capture card (right). 

To increase the range and quality of video, we added separate 900-Mhz antennas 
(see bill of material). The antennas come with male UHF-style connector, which need 
to be converted to a male F-style connector. To conveniently attach the antenna di-
rectly to the receivers, a right-angle connector is needed as shown in Figure 22. 

 

 

Figure 22. The connectors needed to adapt the UHF-style connector of the 900-Mhz 
antenna with the F-type input of the 900-Mhz receiver. 

3.8. Outdoor Capture Station 

To capture interesting data we had the vehicle driven in various outdoor settings. 
The PC workstation was securely encased inside a moving cart [11] and powered by 
a generator [12] (see Figure 24). Figure 23 shows a picture of the data capture sta-
tion. The operator controls the vehicle as well as the recording of the data from the 
joystick (the trigger is used to start/stop capturing, the twist axis is used for steering 
and the lever on the left side of the handle for the throttle). Video goggles are con-
nected to the video receivers and provide a glare-free view of the video, even in 
broad daylight. 
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Figure 23. The manned capture station. All components are securely housed within 
the movable cart. Both the cart and power generator can be easily loaded in and off 
a minivan and transported to remote locations by a single person. 

 
Figure 24. Honda EU1000iA2 Portable Generator (120 V, 1000 W). This unit was able 
to operate the computer and charge battery packs for the vehicle at the same time. 
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3.9. Battery Charging 

The vehicle needs two packs of 7.2-V batteries (6-cells). 3000 mAh or higher are 
recommended in order to increase the length of data capture runs. We used NiMh 
because they are simpler to maintain (no reconditioning necessary). To efficiently 
charge these two packs together, we use a digital peak charger from Astroflight (see 
part list). The charger can be connected directly to the DC output of the power gen-
erator or, providing an adequate power supply (see part list) to a 120-V AC outlet for 
overnight charging. The battery charger’s connectors need to be adapted in order to 
charge both battery packs simultaneously. Figure 25 shows the connectors and cable 
needed to connect the pack in series to the charger. 

 

 

Figure 25. To connect up to three 7.2-V battery packs to the charger, two following 
is needed: 3 female and 1 male Tamiya 7.2-V connectors, a pin extractor for polar-
ized connector (cat #274-223 at Radio Shack) and 14AWG wire. 

4. Machine Learning Environment 

4.1. Lush Software 

The machine learning environment chosen is called Lush. Lush is an object-oriented 
programming language designed for researchers, experimenters, and engineers in-
terested in large-scale numerical and graphic applications. Lush is designed to be 
used in situations where one would want to combine the flexibility of a high-level, 
loosely-typed interpreted language, with the efficiency of a strongly-typed, natively-
compiled language, and with the easy integration of code written in C, C++, or other 
languages. Furthermore, lush provides interfaces for video capturing boards and the 
necessary hooks to build interfaces for other custom hardware as will be required for 
this project. 

Lush implementations of the targeted machine learning algorithms are available as 
free software (under the GPL license) and runs on GNU/Linux, Solaris, and Irix: 
http://lush.sourceforge.net/. 

4.2. Computer Hardware For Network Training 

Two separate computers were used for storage of training data and for conducting 
the network training experiments. The system configuration is shown in Table 1. 
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Item Description 

Manufacturer Penguin Computing 

Model Relion 130 Server 

CPU Dual Intel Xeon, 3.06 GHz clock 

Memory 512 MB Low-pro DDR PC2100 

System hard drive 40 GB Seagate 7200 IDE V2 

Data hard drive 200 GB Maxtor 7200 IDE w/8MB 

Chassis 1.75” Rack mount 

OS Linux Red Hat 8.0 

Table 1. Configuration of the compute servers used for training. Two equally config-
ured servers have been in use. 

The two compute servers were configured such that both data hard drives were 
mounted on the other machine and the system hard drive of server one was backed 
up by server 2. Otherwise the configuration was identical. It was possible to run 
training experiment on either compute server and have access to the entire set of 
training data, even if it was stored on the other server. 

In addition to the two compute servers, three 200-GB Maxtor USB hard drives have 
been used to carry the data between the data collection PC and the two training 
compute servers and for backup of the collected training data. 

4.3. End-to-End Learning Overview 

Traditionally, autonomous vehicle control would be broken up into subtasks which 
would then be individually implemented and hand tuned, for example: 

¿ Image preprocessing such as white balance and noise filtering. 

¿ 3-D image extraction. 

¿ Object detection. 

¿ Path planning. 

In the presented end-to-end learning approach all these steps are combined into a 
single network that is trained solely based on examples. The network is highly struc-
tured to allow for optimizing individual processing steps but in no part is any hand 
optimization or initialization done. The network starts with random values and learns 
entirely from examples.  

The overall sensory-motor process takes the images from the stereo cameras as in-
put and produces throttle position and steering wheel angle as output, using end-to-
end learning techniques to map inputs to output. 

5. Data Collection 

Data collection was done by a human driver who drove the vehicle remotely from the 
PC with the joystick. The driver could see the image of one video camera (no stereo 
vision) while driving. During each training run the PC recorded the output of the two 
video cameras together with the steering wheel position and throttle of the joystick 
and other sensors. Only the data from the video cameras and steering wheel angle 
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was used for supervised learning. The other sensors were only needed during rein-
forcement learning. 

5.1. Strategy 

As this data serves for training of the network, it was extremely important to collect 
the right type of data, e.g., to collect data from all different situations that we want 
the vehicle to learn, use a great variety of different training grounds and lighting 
conditions, and to avoid collecting conflicting data. For example, since we want the 
vehicle to drive straight whenever no obstacle is in sight we avoided collecting any 
data where the vehicle turns in such a situation. The general strategy for collecting 
training data was as follows: 

¿ Collect data from as large a variety of off-road training grounds as possible. 

¿ Collect data with differing lighting conditions, i.e., different weather and dif-
ferent time of day. 

¿ Collect sequences where the vehicle starts driving straight and then turns as 
an obstacle appears. 

¿ Avoid turning when there are no obstacles in sight. 

¿ Include straight runs with no obstacles and no turns as part of the training 
set. 

¿ Try to be consistent in the turning behavior, i.e., always turn at approxi-
mately the same distance from an obstacle and always turn about the same 
amount to avoid the obstacle. 

Even though great care was taken in collecting the highest quality training data pos-
sible, there is a number of imperfections in the training data that could not be 
avoided: 

¿ Since low cost cameras were used, the white balance of the two was not ex-
actly equal and the brightness of the two stereo images was therefore slightly 
different. 

¿ The wireless video connection caused dropouts and distortions of some 
frames. Approximately 5% of the frames were affected. Examples are shown 
in Figure 29 and Figure 30. 

¿ The cameras are mounted rigid on the vehicle and are exposed to vibration of 
the vehicle. The resulting video clips are quite jerky and sometimes hard to 
view even by humans. 

¿ The auto brightness adjustment of the cameras was sometimes slow and not 
very good. Especially driving into the sunlight caused the foreground to be-
come very dark and objects became hard to recognize. 

Despite these difficult conditions, the network managed to learn the task quite well 
as will be shown later. 

5.2. Collected Data 

The data was recorded and is archived with the full resolution of 320 × 240 × 24 
frames per second. However, not the full available resolution was used for actual 
training (see Section 6).  
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Data for supervised learning was collected on 17 days between September and De-
cember 2003. A total of 3,228 clips were collected with an average length of about 
70 frames each. This results in a total number of about 225,000 frames. 

Data for reinforcement learning was collected on 3 days in January 2004. A total of 
349 clips were collected with an average length of about 70 frames each, resulting in 
about 24,000 frames. 

5.3. Data Cleaning 

Sometimes it was unavoidable to make turns even if there was no obstacle in sight, 
just to bring the vehicle into position. These parts of the video sequences were later 
cut out manually. No other manual data cleaning took place. 

5.4. Example Images 

The following figures show some example images from the collected raw training 
data including the steering wheel angle and throttle position collected from the hu-
man driver. Figure 29 and Figure 30 show examples of problems with the wireless 
transmission. Similar noise and dropouts occurred in approximately 5% of the 
frames. It would have been too time consuming to cut them all out manually. They 
were therefore left in the training data and the network had to deal with them. 

 

 
Figure 26. Example video images from the training data.  The two pictures are taken 
by the two cameras at the same time. The two black bars below the images indicate 
steering wheel angle and throttle position of the human driver. 
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Figure 27. Another example video image from the training data. 

 

 

Figure 28. A third example video image from the training data. 
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Figure 29. Example video image with poor reception. 

 

 

Figure 30. Example video image with a dropout. 

6. Supervised Learning 

6.1. Introduction 

In supervised learning the independent parameters of a network or weights are ad-
justed in an iterative process to optimize the performance for a given set of training 
data. The training data contains example input values or input vectors for the net-
work and the corresponding desired output vectors or target vectors. The network 
output values are compared to the target values and an error is calculated. The func-
tion to calc ulate the errors is called the cost function. It is often the quadratic sum of 
the differences between output and target values. During learning, they are then ad-
justed with an iterative optimization algorithm to minimize the output of the cost 
function. Typically, gradient descent or a modification of it is used. This means the 
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derivative of the cost function to the independent parameters of the network is cal-
culated and the independent parameters are then adjusted by a small amount in the 
direction in which they reduce the cost function output the most (direction of steep-
est descent). The process is repeated many times for the entire training data set un-
til an optimum is reached. 

The networks used in this project were built from traditional nodes, as illustrated in 
Figure 31. The output of the node is calculated as the weighted sum of its inputs 
passed through a nonlinear function of sigmoid shape. It is sometimes called a 
threshold function because it limits the magnitude of the output. 
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Figure 31. A single network node, as used in this project. The output of the node is 
calculated as the weighted sum of its inputs passed through a nonlinear function of 
sigmoid shape. The weights w are the independent parameters of the network and 
are adjusted during training. 

Multilayer networks are built by using multiple layers of nodes, as shown in Figure 
32. The use of a nonlinear function is a prerequisite for building multilayer networks. 
Without it the network would be linear and multiple layers of linear functions can al-
ways be reduced to a single layer which means the discriminative power of the net-
work would be limited to the one of a single layer network. 

 

…

…

…

Inputs

Outputs

 

Figure 32. A multilayer network built from individual nodes. The weights are not ex-
plicitly shown. They are considered part of the connections between the nodes. 

The training of the network is essentially a big numerical optimization process of the 
weights to minimize the output error, i.e., the output of the cost function. 
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Once training is complete, the network is tested with a set of data which has not 
been used during training, i.e., which is unknown to the network. The performance 
of the network on this test set is what really counts, i.e., the capability of the net-
work to generalize and do meaningful work with data it has never seen before. 

A network as shown in Figure 32 is called a fully connected network because the 
output of each node in one layer is connected to an input of each node in the follow-
ing layer. By adding layers and increasing layer sizes a network can be made arbi-
trarily large and it can theoretically learn any task. Practical limits are set by com-
pute power, memory and disk size of available computers but most importantly by 
the amount and quality of the available training data. The quality of the training data 
in this context means how well the data represents reality and how diverse it is to 
cover all aspects of the desired task. This is not necessarily equivalent with, for ex-
ample, the quality of the video cameras, in our case. What would otherwise be con-
sidered poor video quality can still successfully be used by the network as long as it 
contains the relevant information to perform the task. This is a fundamental differ-
ence to traditional image processing algorithms which almost always rely on high 
quality image sensors. 

Each connection in a fully connected network contains one independent weight or 
independent parameter and as the size of the fully connected network grows, so do 
the number of independent parameters. The more independent parameters a net-
work has, the more training data is required to achieve good generalization and to 
avoid that the network simply “memorizes” the training data. In reality, the generali-
zation capability or lack of unlimited training data and compute power limit the use 
of fully connected networks in many cases. If the network is made too small, on the 
other hand, it looses the discriminative power to solve the problem and performs 
poorly, even on the training set. A solution to this problem can be to keep the num-
ber of connections in the network high but reduce the number of independent 
weights by having certain groups of connections share the same weight. How this 
was done for this particular project is described in the next section. 

6.2. Network Design 

A convolution network has been chosen whose architecture is inspired by the low-
level human nervous system for vision. Such network architectures have previously 
been successfully applied to handwritten character recognition and object recognition 
[13]. In such a network the nodes of one layer are connected to a small rectangular 
area of the layer below, as illustrated in Figure 33. The node to the right of the one 
shown in layer 2 is connected to the same area in layer 1 but shifted by one or more 
pixels to the right. This is repeated throughout the entire layer 1 in both dimensions. 
As an important restriction, the same set of weights is used for all nodes in layer 2. 
This means that the output of layer 2 is essentially a convolution of layer 1. For ex-
ample, for a layer one of size 14 × 14, a convolution kernel of 3 × 3, and a subsam-
pling rate of 1:1, layer 2 would have 12 × 12 nodes, 1,296 connections but only 9 
independent weights. 
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…

…

Layer 1 (input image)

Layer 2

 

Figure 33. Section of a convolutional network. It shows a single node in layer 2 
which is connected to a small rectangular area in layer 1. 

A convolution essentially scans for features and layer 2 will become a map of how 
much the feature defined by the convolution kernel is present at the different loca-
tions of layer 1. Multiple plains with different convolution kernels can be used in a 
single layer to allow the network to look for different features. In any case, the num-
ber of independent parameters is very small compared to the number of connections. 
For image processing applicat ions this network configuration has proven to be a very 
effective tool to reduce the number of independent parameters while preserving the 
network’s discriminative power. 

The actual network used for the supervised learning in this project is organized into 
six layers with feature maps where feature maps become progressively smaller with 
each layer. The input layer consists of the raw image data that was sub-sampled to 
149 × 58 pixels. The output consists of two 1 × 1 feature maps which represent the 
two driving directions left and right. Figure 34 shows the network architecture. 

 

149 × 48 × 6 149 × 48 × 6 49 × 14 × 6 45 × 12 × 24 9 × 4 × 24 1 × 1 × 2

Pixels from
video camera

Steering
actuator

 

Figure 34. The network architecture for supervised learning. Shown are the feature 
maps only but not the convolution kernels that connect the feature maps. The input 
of the network (on the left) is taken directly from the pixels of the video cameras. 
There are two cameras with three (YUV) color maps each, therefore the six feature 
maps at the input. The output consists of two values only which are directly inter-
preted as the steering actuator (left and right). 

The first layers (the left two layers in Figure 34) are connected a total of 30 3 × 3 
kernels with a subsampling ratio of 1 × 1. The next two layers have 8 kernels and a 
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subsampling of 3 × 4, followed by 96 kernels with 1 × 1 subsampling, 24 kernels with 
5 × 3 subsampling, 1,920 kernels with 1 × 1 subsampling and finally 600 kernels with 
1 × 1 subsampling. In total there are 3,148,776 connections but only 71,886 inde-
pendent parameters. 

Out of the available video resolution of 320 × 240 × 24 frames per second, only 
149 × 48 × 12 frames per second was being used for training. The reason for this is 
simply the limitation of compute power. We had to choose a network small enough in 
size that the PC which controls the vehicle can process 12 frames per second which 
is considered the minimum frame rate to control the vehicle at the desired driving 
speed. This limits the total number of connections in the network to roughly three 
million. 

6.3. Learning Experiments Carried Out  

In supervised training phase the network was presented with single frames only. 
Originally we had planned to feed two consecutive frames to the network to allow the 
extraction of a limited amount of motion information. There is one main problem 
with this approach, however: when the network sees multiple frames, it's very easy 
for it to estimate which direction the vehicle is turning. Since the steering values are 
fairly smooth in time, the network can predict the correct steering angle almost 
every time simply by looking at where the human driver is turning the vehicle at any 
given moment. In effect, a good approximation of the desired output is hidden in the 
input if multiple frames are presented to the network. It was therefore decided to 
carry out the supervised training phase with single frames only (i.e., single frames in 
time, the network still had access to the two images from the two cameras to allow 
for stereo vision). 

6.4. Results 

Figure 35 and Figure 36 show two snap shots of the trained network in action. The 
network was presented with scenes that it has never seen before. On top is the sub-
sampled input from the stereo video cameras. The dark blue bar on the left below 
indicates the network steering output and below are the states of the individual fea-
ture maps of the network. The camera input (YUV maps of the two cameras) is on 
the left and steering output is on the right. This represents the internal state that the 
network produces when presented with the above image. It is clearly visible that the 
network was able to learn the task. A better visualization of the results can be seen 
in the accompanying video clips. 
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Figure 35. A snap shot of the trained network that was presented with a scene it has 
never seen before. On top is the sub-sampled input from the stereo video cameras. 
The dark blue bar on the left below indicates the network steering output and below 
are the states of the individual feature maps of the network. The camera input (YUV 
maps of the two cameras) is on the left and steering output is on the right. This 
represents the internal state that the network produces when presented with the 
above image. 
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Figure 36. Another snapshot of the trained network. 
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7. Extended Supervised Learning 

This section describes the work which was carried out under amendment P00001 to 
contract MDA972-03-C-0111. 

7.1. Supervised Learning with New Training Data 

Throughout several months of collecting training data, the vehicle hardware was con-
tinually changed. At the end, considerable improvements have been achieved. These 
include more robust video transmission with fewer dropouts, adjustments of sonar 
sensors do avoid noise from the ground and grass, a reliable electronic compass, and 
a more reliable mechanical transmission of the vehicle which had no more break-
downs and following interruptions of training data collection. Last but not least, the 
skills of the human vehicle operator (Jan Ben) have been refined. 

Training data collected early in the project has therefore less good quality than train-
ing data collected later. For this reason it was decided to collected an entirely new 
set of training data with the latest hardware such that older training data recorded 
with lower quality hardware can be replaced with higher quality training data. By re-
peating the supervised training experiments and comparing the results with the cor-
responding results achieved in earlier experiments with the old training data we can 
get an idea of the influence of training data quality to the experimental results. 

7.1.1. Results 

Two experiments have been carried out: 

¿ Starting training with random weights, i.e., without any prior knowledge from 
previous training. 

¿ Starting training with the best set of weights from the previous training runs 
(with old training data). 

In either case, the network architecture has remained unchanged (as described in 
Section 6.2). The results are shown in Table 2. The new training data has been di-
vided into a training set (95,421 frames) and a test set (31,800) frames. The frames 
were taken from approximately 1,500 new video sequences. The training set was 
used to adjust the weights of the network during training while the test set was not 
used for adjusting the weights at all. It serves to measure the generalization capabil-
ity of the network. 

After eleven iterations (which took four days of computation time) no significant im-
provements in the error rate occurred anymore. 

Two performance measurements were recorded, the percentage of correctly classi-
fied steering wheel angles and the so-called energy. The energy is the Euclidean dis-
tance between the output produced by the network and the target output averaged 
over all input patterns (frames). It is being used to calculate the derivatives for 
weight update during training, which is essentially a numerical optimization of the 
weights to minimize the energy. 

The percentage of correctly classified steering wheel angles is a measure that cannot 
be used for training because it is not differentiable. However, it is a more human 
readable measure to evaluate the network performance. The network output was in-
terpreted by a driver function to be one out of three classes: 
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¿ Go straight. 

¿ Turn left. 

¿ Turn right. 

The percentage of correctly classified steering wheel angles measures how often the 
network classified a given input correctly (averaged over all input data). Note, that a 
classification rate of 74% doesn’t mean that the vehicle would crash into obstacles 
36% of the time. This is because sometimes two routes around an obstacle are both 
valid (e.g., go around an obstacle to the left or right are both correct) and the net-
work has chosen one rout but the human driver who recorded the training data has 
chosen another one. While both are correct, this event will still be recorded as an in-
correct classification. Another example is when the network while approaching an 
obstacle decides to turn a little earlier or later than the human driver. 

 

Training Set Test Set 
 Classified 

Correct 
Energy Classified 

Correct 
Energy 

Old training with old data 63.37% 1.2969  42.32% 2.1453  

New training with new data starting with 
random weights 

73.95% 0.9046 64.16% 1.2416 

New training with new data starting with 
weights from old training 

72.04% 0.9596 63.67% 1.2550  

Table 2. Comparison of training results with old and new training data. The training 
set was used to adjust the weights of the network during training while the test set 
was not used for adjusting the weights. It serves to measure the generalization ca-
pability of the network.  

7.1.2. Conclusions 

The newly collected training data did improve the network performance significantly 
as demonstrated with a side-by-side performance comparison of the same network 
architecture trained with the old data and trained with the new data. We therefore 
expect that the new training data will serve as a better database for future experi-
ments than the old data does. 

7.2. Removal of All 3-D Information for Training 

We wanted to find out how well the network performs if all 3-D information is re-
moved. This was achieved by feeding only one of the two vehicle cameras to the 
network. The network can therefore not extract 3-D information from the video im-
ages. Furthermore, since only single frames are presented to the network, the use of 
optical flow to indirectly extract 3-D information from motion is also not possible. 
This forces the network to work with elements of feature extraction and scene analy-
sis. 

The results are compared to those achieved with earlier supervised training with two 
cameras. 
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7.2.1.  Results 

The network architecture used is exactly the same as described in Section 6.2, ex-
cept that one camera input was removed and replaced with the other camera input. 
The network therefore has the exact same structure and size but it “sees” the input 
of one camera twice instead of seeing the input from the two different cameras. 

The results are shown in Figure 37 and Figure 38 and in Table 3. In total, seventeen 
iterations of the new one-eyed training experiment have been carried out  (it takes 
about half a day per iteration).  

The same two performance measurements were recorded, as described in Sec-
tion 7.1, i.e., the percentage of correctly classified steering wheel angles and the en-
ergy. 
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Figure 37. Comparison of classification rate for training and test set between the 
previous results (binocular) and the new one-eyed experiment (cyclop). The training 
set was used to adjust the weights of the network during training while the test set 
was not used for adjusting the weights. It serves to measure the generalization ca-
pability of the network. In both experiments, the network was initialized with ran-
dom weights. 
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Figure 38. Comparison of energy (mean squared error) for training and test set be-
tween the previous results (binocular) and the new one-eyed experiment (cyclop). 

 

Training Set Test Set 
 Classified 

Correct 
Energy Classified 

Correct 
Energy 

Binocular: Previous experiment with 
two video cameras (see also Section 7.1) 

74.7% 0.89 64.2% 1.24 

Monocular (cyclop): One-eyed experi-
ment (only one video camera fed to the 
network) 

73.3% 0.95 62.8% 1.27 

Table 3. Comparison of energy (mean squared error) and classification rate for train-
ing and test set between the previous results (binocular) and the new one-eyed ex-
periment (cyclop) after seven iterations, i.e., seven training runs through the entire 
training set. 

7.2.2. Further Examinations 

Table 3 shows that the one-eyed network (cyclop) performs almost as good as the 
binocular one. This raises the question how much 3-D information the binocular net-
work actually extracts and uses, if any. To examine this question further we did two 
things: 

1) Numerous empirical trials with presenting various objects in front of the vehi-
cle under different indoor conditions such as rooms hallways and different 
lighting. In each trial the trained binocular network was compared to the 
trained cyclop. In most cases both networks perceptually performed the same 
but it was possible to construct situations which require 3-D information to 
make for making obstacle avoidance decisions in which the binocular network 
performed well but the cyclop network failed. This provides at least empirical 
proof that the binocular network did learn how to extract 3-D information 
from the two camera inputs and is using this information if necessary. 
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2) A third training experiment (besides binocular and cyclop) was set up. This 
time one network input was connected to one camera and the second network 
input was connected to the difference of the two cameras. Table 4 shows the 
results and compares them with the other two networks. The performance of 
the new differential input network is in between the binocular the and cyclop 
network. The results fall right into what common sense would suggest: The 
performance is better than monocular (cyclop) for obvious reasons, and 
worse than binocular because the only thing the network has access  to is the 
difference between the views, whereas in the binocular mode, it can compute 
several combinations of the two images. 

 

Test Set 
 Classified 

Correct 
Energy 

Binocular: Previous experiment with two video cam-
eras (see also Section 7.1) 

64.1% 1.24 

Differential input: One camera fed to one network 
input and the difference between the two camera im-
ages fed to the other network input. 

63.6% 1.25 

Monocular (cyclop): One-eyed experiment (only one 
video camera fed to the network) 

62.7% 1.27 

Table 4. Comparison of network performance (after fifteen training iterations) be-
tween two camera inputs, one camera and one differential input and only one cam-
era input. 

7.2.3. Conclusions 

The performance of the monocular network is surprisingly close to the one of the 
binocular network. This suggests that the network architecture is well suited to do 
obstacle avoidance based on scene analysis and image interpretation or at least 
some form of the two. It further suggests that in the chosen training environment 
the task of obstacle avoidance is doable without 3-D information.  However, this con-
clusion may not apply to different outdoor environments, for example situations 
where obstacles are hard to distinguish from their background. 

The evidence that the network can operate even without 3-D information is impor-
tant because 3-D information is only available within limited range (in the order of  
30 ft) but cannot be relied upon to do path planning very far ahead of the vehicle. 

7.3. Demonstration of Progress During Training 

To demonstrate that the network actually learns, i.e., to show the progress of the 
network during the training phase we captured the weights in three stages: 1) un-
trained, i.e., random weights, 2) partly trained and 3) fully trained. The partly 
trained weights were taken from about one quarter of the first training iteration, i.e., 
after being trained by about one quarter of the training set for one time. One itera-
tion through the entire training set would have brought the network already to a per-
formance too close to the fully trained network and learning progress would have 
been hard to recognize. The results are captured on video clips which are included on 
the same CD ROM as this report. The following three figures show snapshots of each 
of the three stages. 
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Figure 39. Snapshot of an untrained network with random weights. The snapshot is 
taken from the test set. The top part shows the two camera input images. The lower 
part shows the network activation levels. The left most maps are the input images 
presented to the network (reduced in size and separate frames for the Y, U, V com-
ponents of the two input images).  The center shows the steering wheel angle of the 
human driver (steering hard left) while the test sequence was recorded. Below it is 
the steering wheel angle generated by the network (steering slightly to the right). It 
is evident that the network steers in the wrong direction which is not unexpected 
since this is an untrained network. Note that the center of steering (red vertical 
bars) in the picture is not aligned between human driver and network output. The 
number next to the network steering wheel output is the energy. 
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Figure 40. Snapshot of a partly trained network. In contrast to Figure 39 the net-
work now steers slightly to the right which is better than the untrained network. 
Note the activation levels in the higher level feature maps (to the right) which have 
sharper images compared to the untrained network. 
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Figure 41. Snapshot of a fully trained network. The network now steers hard left, 
just like the human driver does. Also, the higher level feature maps show even 
sharper images compared to Figure 40 which is a sign of the network doing image 
processing. 
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8. Reinforcement Learning 

8.1. Introduction 

The ultimate goal of reinforcement learning is to allow the network to continue learn-
ing and improve its performance while driving itself. In other words, it should be ca-
pable of learning from its mistakes. For this purpose we have installed additional 
sensors: two sonar distance sensors, two tilt sensors and an electronic compass. 
These sensors will let the vehicle determine if it came too close to an object or over-
turned. Unfortunately, the output of these sensors cannot directly be used as train-
ing data for the network because by the time the vehicle overturns or bumps into an 
object it is already too late. Corrective actions have to be taken several time steps 
back in the past, as explained in the next paragraph. 

In the supervised learning case the human driver effectively gave the network im-
mediate feedback during training. For any given frame of the video sequences the 
steering wheel angle of the human driver was recorded. The network was simply 
presented with the (stereo) video image as the input and was asked to mimic what 
the human driver does, as illustrated in Figure 42. 

Network

Input:
Stereo
video
frames

Output:
Steering
wheel
angle

 
Figure 42. Network configuration used in the supervised learning phase. Inputs are 
the stereo video frames and output is the steering wheel angle. The cost function 
during training is based on the error between network output and human driver out-
put. 

In case of reinforcement learning, the vehicle has to rely on its own sensors. The in-
terpretation of the sensors is simple: overturning and bumping into obstacles is bad, 
everything else is good. However, the fact that the vehicle bumped into an object 
cannot directly be used as training input. The network has to learn how to turn the 
vehicle before it hits the obstacle but at that time its sensors don’t provide any feed-
back yet. 

8.2. Modified Network Design 

To deal with this situation the network output has been changed. Instead of output-
ting the steering wheel angle, the network is trained to predict the value of the vari-
ous sensors at some time step in the future. In other words, based on the current 
video image and the current steering wheel angle, the network learns to predict 
whether or not it will crash or overturn at some time in the near future. This network 
configuration is illustrated in Figure 43. 
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Network
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Figure 43. Network configuration used in the reinforcement learning phase. The in-
put is the same as in the supervised learning phase, i.e., the stereo video frames. 
The output is different. It predicts the values of the various sensors at some time 
steps in the future based on the current video input and steering wheel angle. 

The network output can no longer directly be used to drive the vehicle. However, 
once the network learns to predict the near future well, a simple “driver program” 
can be added at the output of the network which will choose the steering wheel angle 
that produces the best result in the future, i.e., drive such that the vehicle will not 
overturn or bump into an object in the future. 

The purpose of the electronic compass is to allow the vehicle to stay on an average 
constant course. However, its data has not yet been used in actual experiments, i.e., 
up to this point the vehicle has solely been trained to avoid obstacles and drive in a 
straight line if there are no nearby obstacles. 

The network architecture is similar to the one used during the initial supervised 
learning phase. It is still a convolutional network with six layers. Only the last layer 
is significantly different from the supervised network. Instead of consisting of only 
two outputs for steering wheel angle, it now consists of 40 outputs organized in four 
groups of 10 outputs each (see Figure 44). The 40 network outputs are used as fol-
lows: 

¿ 2 outputs to predict the steering wheel angle, one for left and one for right 
steering. 

¿ 2 outputs to predict the throttle (one for forward and one for backward mo-
tion). 

¿ 2 outputs to predict the values of the sonars, one for each sonar. 

¿ 2 outputs to predict the tilt sensors. 

¿ 2 outputs to predict the compass (one for the sine and one for the cosine 
component). 

Four such groups of 10 outputs each were used to predict values in the for time 
steps of the immediate future. A time step is defined by the capturing frequency of 
the video frames which is about 8 frames per second. The capturing frequency was 
limited by the compute power of the PC which controls the vehicle. In contrast to col-
lecting data for the supervised learning phase where the entire CPU was free to cap-
turing frames, the same CPU now had to also drive the vehicle. 
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149 × 48 × 6 149 × 48 × 6 49 × 14 × 6 45 × 12 × 24 9 × 4 × 24 1 × 1 × 40

Pixels from
video camera

Predictors

 

Figure 44. The network architecture for reinforcement learning. Shown are the fea-
ture maps only but not the convolution kernels that connect the feature maps. The 
input of the network (on the left) is taken directly from the pixels of the video cam-
eras. There are two cameras with three (YUV) color maps each, therefore the six 
feature maps at the input. The output consists of 40 nodes organized in four groups 
of 10 each. Each group predicts the output of the various sensors one time step fur-
ther into the future than the previous group. 

8.3. Modified Data Collection 

In the reinforcement learning phase of the project, data collection continued but this 
time the vehicle was driven by the previously trained network instead of a human 
driver. The human supervisor would place the vehicle down on the ground facing 
some obstacle or series of obstacles and then give control of the vehicle to the net-
work, overwriting control only if the vehicle was clearly taking a wrong path towards 
an obstacle. 

As this data serves for training of the network, it was extremely important to collect 
the right type of data, e.g., to collect data from all different situations that we want 
the vehicle to learn, use a great variety of different training grounds and lighting 
conditions, and to avoid collecting conflicting data. The human supervisor was able 
to place the vehicle into these different situations to collect an appropriate variety of 
data, but since the driving was not under human control for much of the time it was 
necessary to do more driving and additional video editing to obtain training data that 
would generate improved performance. Poor parts of the video sequences were later 
cut manually. The general strategy for collecting training data was similar as for col-
lecting data for the previous supervised learning phase: 

¿ Collect data from as large a variety of off-road training grounds as possible. 

¿ Collect data with differing lighting conditions, i.e., different weather and dif-
ferent time of day. 

¿ Collect sequences where the vehicle starts driving straight and then turns as 
an obstacle appears. 

¿ Include straight runs with no obstacles and no turns as part of the training 
set. 
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Data for reinforcement learning was collected on 3 days in January 2004. A total of 
349 clips were collected with an average length of about 70 frames each, resulting in 
about 24,000 frames. 

8.4. Learning Experiments Carried Out and Results 

Two different training experiments with reinforcement learning have been carried out 
so far. 

8.4.1. First Reinforcement Learning Experiment  

The training data that was collected contains data from the network driving itself but 
also the steering wheel angle from a human. The steering wheel angle of the human 
was not used to actually drive the vehicle but was just recorded for training, i.e., the 
network was trained to predict the steering wheel position of the human driver. The 
errors of the different network output were weighted differently, according to their 
importance. The values are shown in Table 5. 

 

Sensor Error weight 
coefficient 

Steering wheel for di-
rection the network 
picked. 

1.0 

Steering wheel angle 
for other direction. 

0.2 

Sonar 1.0 

Throttle 0.5 

Forward/reverse direc-
tion 

0.2 

Tilt sensors 0.5 

Compass 0.1 

Table 5. Coefficient for how much errors of the different outputs were weighted dur-
ing training. 

The first n-1 layers of the network were initialized with the weights of the trained su-
pervised network. The weights of the last layer were initialized with random values. 
After training was completed a very simple driver was used to test the result. This 
driver just used the steering wheel angle the network predicted for the next time 
step. 

Result 

The result was disappointing. Essentially, the network kept driving a straight course 
and almost never made an attempt to avoid an obstacle. 

The explanation is expected to be as follows. During data collection for reinforcement 
learning the human driver let the network run on its own for most of the time. Only if 
the network made a mistake would the human record a different steering wheel an-
gle than the network. This resulted in the majority of the training data teaching the 
network to drive straight and almost no training data teaching it otherwise. 
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8.4.2. Second Reinforcement Learning Experiment  

A second reinforcement learning experiment was therefore set up in an attempt to 
avoid the problem of the first experiment. A cost function was created to predict 
when the human would interfere with the driving of the vehic le. Another problem en-
countered in the first experiment is a large number of dropouts of the telemetry 
data. An additional cost function was introduced to predict the validity of the teleme-
try data, such that dropouts would not lead to feeding the network contradictory 
training data. Only data where the human interfered and where the telemetry data 
was valid was then given any significant cost during learning. 

Result 

The result was better than the previous experiment but still not as good as the re-
sults of the earlier supervised learning experiments. At this point it looks like a num-
ber of problems that were encountered during data collection contributed to this re-
sult: 

¿ Range of wireless transmission of sensor data is limited to about 50m (150ft) 
of open terrain. Also, a large body (house, etc.) will prevent proper reception 
of the sensor data. When collecting new data, the receiving station will be lo-
cated with greater care to alleviate this issue. 

¿ Dropouts of video frames during wireless transmission (significant improve-
ment was achieved with better receiver antennas but no new training data 
has been collected yet1).  

¿ Windshield got scratched by the camera lenses, resulting in a fuzzy spot in 
the center of the images (windshield has been replaced and clearance be-
tween camera lenses and windshield increased, but no new training data has 
been collected yet). 

9. Conclusions 

The network trained with supervised learning has learned the task of obstacle avoid-
ance in a real life setup. It had to deal with drop outs and imperfect input video data. 
The network is highly structured and the structure was hand crafted. However, none 
of the over 70,000 free parameters of the network was hand tuned and not even 
hand initialized (the network was initialized with random values). 

The network learned from training examples how to extract and process the essential 
information from the raw (unprocessed) video input data, such as 3-D image extrac-
tion, edge detection, object detection and steering strategy for obstacle avoidance. 
Particularly impressive is how well the network can cope with the less than perfect 
real life data it was given.  

Reinforcement learning has worked in principle but has not yet lead to an improve-
ment of the earlier network trained with supervised learning. This does not mean 
that reinforcement learning does not work as expected. However, achieving more 
meaningful results will require to recollect training data with the improved hardware 
and to fine tune the methods for dealing with noise in the sensor data. 

                                      

1 At the time the improvements were made, snow outside prevented the collection of new 
training data. 
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11. Appendix 

11.1. Basic Stamp Program Listing for Sensor Reading 

'{$STAMP BS2SX} 
' Author E. Cosatto 
' Net-Scale Technologies Inc. 
  
' Pins to the Honeywell HMR3100 Compass 
RTS  CON 0  ' Ready to send (OUT) 
TXD  CON 1  ' Data (IN) 
RXD  CON 2  ' Data (OUT) 
 
' Pins to the Memsic 2125 
Xin  CON 6 
Yin  CON 7 
INPUT Xin 
INPUT Yin 
 
' Pins to the Devantech SRF04 
Trigger          CON     9 
Echo             CON     8 
Trigger2         CON     11 
Echo2            CON     10 
INPUT Echo 
OUTPUT Trigger 
INPUT Echo2 
OUTPUT Trigger2 
 
' temp variables 
CO1 var word 
CO2 var word 
 
' serial config on BS2SX 
'   9600bd, 8bit, noparity, inverted 
bdr  var word 
bdr=16624 
 
' variables for Devantech SRF04 (works for BS2sx and BS2p) 
Trig10          CON     30      ' trigger pulse = 10 uS 
ToCm            CON     78 
 
 
samples     VAR   Nib     ' loop counter 
pWidth      VAR   Word    ' pulse width from sensor 
rawDist     VAR   Word    ' filtered measurment 
cm   VAR Word   ' conversion to cm 
checksum VAR Word    ' error correction 
 
xRaw  VAR WORD 
yRaw   VAR WORD 
 
tr1  VAR WORD 
tr2  VAR WORD 
tr3  VAR WORD 
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tr4  VAR WORD 
 
 
 
' ==========================================================  
' Main Program  
' read alternatively on both channels of the 1298 and send  
' the data back to the PC through the serial port  
' ==========================================================  
  
high  RXD  ' Normal mode for reading compass 
high  RTS         ' Normal Mode for reading compass 
INPUT TXD 
high DIO_n  ' Set data pin for first start bit.  
LOW Trigger  ' Deactivate Devantech 
 
again:  ' Main loop.  
  
 GOSUB Get_compass   ' Get data from compass 
 
     GOSUB Get_Sonar1   ' take sonar reading 
 tr3 = cm 
 
 GOSUB Get_accel   ' memsic reading 
 
     GOSUB Get_Sonar2   ' take sonar reading 
 tr4 = cm 
 
 checksum = CO1+CO2+tr3+tr4 + xRaw + yRaw 
 
      ' send data byte by byte 
 SEROUT 16, bdr, [0]  ' header (2x byte 0) 
 SEROUT 16, bdr, [0]  ' 
 SEROUT 16, bdr, [tr1.HIGHBYTE]  
 SEROUT 16, bdr, [tr1.LOWBYTE]  
 SEROUT 16, bdr, [tr2.HIGHBYTE] 
 SEROUT 16, bdr, [tr2.LOWBYTE] 
 SEROUT 16, bdr, [tr3.HIGHBYTE]  
 SEROUT 16, bdr, [tr3.LOWBYTE]  
 SEROUT 16, bdr, [tr4.HIGHBYTE] 
 SEROUT 16, bdr, [tr4.LOWBYTE]  
 SEROUT 16, bdr, [xRaw.HIGHBYTE]  
 SEROUT 16, bdr, [xRaw.LOWBYTE]  
 SEROUT 16, bdr, [yRaw.HIGHBYTE]  
 SEROUT 16, bdr, [yRaw.LOWBYTE]  
 SEROUT 16, bdr, [checksum.HIGHBYTE]  
 SEROUT 16, bdr, [checksum.LOWBYTE]    
 
goto again ' Endless loop.  
 
' ==========================================================  
' Honeywell HMR3100 Compass reading 
Get_Compass: 
PULSOUT RTS, 1250  ' 1ms pulse to initiate transfer 
SERIN TXD, 240, [CO1.LOWBYTE] 
SERIN TXD, 240, [CO2.HIGHBYTE] 
SERIN TXD, 240, [CO2.LOWBYTE] 
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RETURN   
  
 
 
' ==========================================================  
' Devantech SRF04 Left Sonar reading 
Get_Sonar1: 
PULSOUT Trigger, Trig10               ' 10 uS trigger pulse 
PULSIN Echo, 1, cm                    ' measure pulse 
cm = cm + 257 'ensures cm bytes are never 0 (reserved for synch) 
RETURN 
 
' Devantech SRF04 Right Sonar reading 
Get_Sonar2: 
PULSOUT Trigger2, Trig10              ' 10 uS trigger pulse 
PULSIN Echo2, 1, cm                   ' measure pulse 
cm = cm + 257 ' ensures cm bytes are never 0 (reserved for synch) 
RETURN 
 
' ==========================================================  
' Memsic accelerometer reading 
Get_accel: 
PULSIN Xin, 1, xRaw 
PULSIN Yin, 1, yRaw 
xRaw = xRaw + 257 
yRaw = yRaw + 257 
RETURN 
 
11.2.  Basic Stamp Program Listing for PC-to-remote interface 
'{$STAMP BS2SX} 
' Author E. Cosatto 
' Net-Scale Technologies Inc. 
' 
' creates a PPM signal for use by remote control 
' through trainer cord based on data read on 
' serial port. Two bytes are read from serial port 
' and send to channel 1 and 2 (first and 2nd pulse). 
' A total of 6 pulses is sent (compatible with 6 channel 
' receivers). The PPM format is the following. Starting 
' low, a first pulse of at least 10ms length is sent for 
' synchronization. The following 6 pulses have a width varying  
' from 1ms to 2ms. These values have to be calibrated with 
' the receiver and servos. 
  
tmp   VAR BYTE 
bdr   VAR BYTE 
ib0   VAR BYTE 
ib1   VAR BYTE 
ib00  VAR BYTE 
ib11  VAR BYTE 
gearb VAR BYTE 
p0    VAR WORD 
p1    VAR WORD 
gear  VAR WORD 
POL2  VAR BIT 
 
' set initial values to midpoint, in case there is an error 
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' right away (so we don't send crap to the servos) 
p0 = 1486 
p1 = 1486 
 
' serial config on BS2SX 
'   9600bd, 8bit, noparity, inverted 
bdr=16624 
 
' set PIN 2 as output: 
' set initial polarity: 0 of noninverted, 1 if inverted 
' pin might be inverted if using an inverting amplifier on the pin 
DIR2=1 
POL2=1 
OUT2=POL2 
 
' this has been fixed in the truck to low gear 
gear = 0 
gear = 1900 - 700*gear 
 
loop: 
 TOGGLE 2            ' start synchronization pulse 
 SEROUT 16, bdr, [0] ' send synchro byte 0 to PC 
 
 ' read joystick position (2 axis) 
 ' times out after 40 millisec to avoid a too long synch pulse 
 SERIN 16, bdr, 40, timeout, [ib0, ib1, ib00, ib11] 
 
      ' read twice each byte to correct transmission errors 
      ' additional check for value 0 and 255 (never transmitted) 
 IF ib0 <> ib00 THEN serror 
 IF ib1 <> ib11 THEN serror 
 IF ib0 = 255 THEN serror 
 IF ib1 = 255 THEN serror 
 IF ib0 = 0 THEN serror 
 IF ib1 = 0 THEN serror 
 
      ' convert range [1..254] to [1250..2500] for PULSOUT command 
      ' this is calibrated to E-MAXX steering 
 p0 = ib0 
 p0 = 5*(p0-128) + 1500 
 
      ' convert range [1..254] to [1759..2012] for PULSOUT command 
      ' this is calibrated to E-MAXX throttle 
 p1 = ib1 
 p1 = p1 + 1758 
 GOTO timeout 
 
serror: 
      ' compensate for above instructions in case of error 
      ' avoids too much jitter 
 PAUSE 20 
 
timeout: 
 OUT2=POL2  ' return pin to low for 0.3 ms 
 OUT2=POL2 
 GOSUB send_pulses 
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GOTO loop        ' main loop  
 
 
send_pulses: 
 
 PULSOUT 2, p0    ' first pulse: steering 
 OUT2=POL2        ' return for .3 milliseconds 
 OUT2=POL2 
 PULSOUT 2, p1    ' second pulse: throttle 
 OUT2=POL2 
 OUT2=POL2 
 PULSOUT 2, gear  ' third pulse: gear (set to low gear) 
 OUT2=POL2 
 OUT2=POL2 
 PULSOUT 2, 1486  ' the rest is unused by the truck  
 OUT2=POL2 
 OUT2=POL2 
 PULSOUT 2, 1486 
 OUT2=POL2 
 OUT2=POL2 
 PULSOUT 2, 1486 
 OUT2=POL2 
 OUT2=POL2 
RETURN 

11.3. Part Listing 

Bill of material for darpa vehicle: 

Complete truck and box (except telemetry) 

Item Description Order 
info 

Part # Qty. Unit 
price 

Total 
price 

Traxxas E-Maxx R/C truck TH TRAC64A5 1 319.99 319.99 
Battery Pack, NIMH,3000mAh, 7.2V TH DTXC2097 2 36.99 73.98 
Pinion 12T TH TRAC3942 2 3.09 6.18 
Spur Gear, 72T TH TRAC4472 1 2.89 2.89 
Camera, 1/3’’ CCD SC PC171XS 2 79.95 159.90 
Lens 2.5mm Micro Lens SC ML2_5MM 2 29.95 59.90 
500mW 900MHz  TX ONLY (special 
order by phone, with RX can be or-
dered on the web (+69.95) 

MC  2 120 240 

LM317T volt regulator RS 2761778 2 1.99 3.98 
Toggle switch RS ? 1 2 2 
Terminal Strip RS 2740680 2 2.49 4.98 
Mini Breadboard RS 2760175 1 7.99 7.99 
PCB Terminals (pkg of 4) RS 2761388 2 2.29 4.58 
Snap Plug connector TH LXD170 2 1.79 3.58 
Battery Pack for onboard electronics TH LXMM41 1 15.99 15.99 
14 AWG wires TH LXJX70 1 3.79 3.79 
Styrene sheet  TH LXDJP6 4 6.99 27.96 
Clear Lexan sheet  TH LXDYW7 1 18.39 18.39 
Brass angles TH LXRW92 1 17.99 17.99 
Brass 2-56 screws TH LXKS20 5 1.70 8.50 
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Brass 2-56 hex nuts TH LXKS62 5 1.70 8.50 
Flat head 4-40, ½’’ screws TH LXM819 4 1.90 7.60 
Velcro strips TH LXD648 1 3.49 3.49 

PC-side components 

Item Description Order 
info 

Part # Qty. Unit 
price 

Total 
price 

Futaba 4YF remote TH LXEFJ4 1 129.99 129.99 
Futaba Trainer cord TH LXBEK7 1 11.99 11.99 
Astroflight battery charger TH ASTP0131 1 129.95 129.95 
Connectors (Tamiya 7.2V) TH LXD170 3 1.79 5.37 
Crimp-Style D-SUB connector RS 276-1429 1 2.49 2.49 
Heat Shrink tubing RS 278-1610 1 2.49 2.49 
900Mhz Receiver SC AVX900R1 2 99.95 199.90 
RFLMA9 900MHz 7dBi Mobile Omni-
Directional Antenna 

RFL RFLMA9-7 2 21.95 43.90 

Joystick (Logitech Wingman) BB 3737059 1 39.99 39.99 
Parallax Basic Stamp 2sx PX BS2SX-IC 1 59 59 
Parallax Board of Education PX 28150 1 65 65 
Box for control interface RS  1 6.34 3.34 

Telemetry (on truck)  

Item Description Order 
info 

Part # Qty. Unit 
price 

Total 
price 

Parallax Basic Stamp 2sx PX BS2SX-IC 1 59 59 
Parallax Board of Education PX 28150 1 65 65 
Abacom wireless RS232 Transmitter 
(418Mhz) 

ABA RTcomTX-
418-RS232 

1 87.15 87.15 

Male-to-Male DB9 gender adapter RS 26-231 1 6.49 6.49 
Devantech SRF04 Ultrasonic Range 
Finder 

PX 28015 2 36 72 

Memsic 2125 Dual-axis Accelerome-
ter 

PX 28017 1 25 25 

Honeywell HMR3100 Digital com-
pass 

HW HMR3100 1 89 89 

Telemetry (PC side) 

Abacom wireless RS232 Receiver 
(418Mhz) 

ABA RTcomRX-
418-RS232 

1 105.51 105.51 

433Mhz Receiver Antenna. ABA GP433BNC 1 ?,<100  
Male-Female DB9 Serial cable RS 26-117B 1 14.49 14.19 
USB to RS232 adapter (if extra se-
rial port needed) 

UW US232 1 29.99 29.99 

Miscellaneous (PC side) 

Power Generator Honda EU1000 AE  1 659 659 
H. Wilson 42" UL-Rated (20" TV) OD 476632 1 249.99 249.99 
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Plastic Utility Carts With Locking 
Cabinet And Big Wheel Kit 

Key to Vendors 

ABA: www.abacom-tech.com 
AE: American Equipment: www.americanequipmentusa.com 
BB: Best Buy (local store) 
CC : Circuit City (local store) 
HM: Hobby Masters, Red Bank (local store) 
HW: http://shop.ssec.honeywell.com 
IBX: www.ibexpc.com 
IM: www.imagesco.com 
LNX: www.lynxmotion.com 
MC: www.microcameras.com 
PLX: www.parallax.com 
OD: www.officedepot.com 
RFL: RF Linx Corp., http://www.rflinx.com 
RS: radio shack (local store) www.radioshack.com 
SC: www.supercircuits.com 
TH: www.towerhobbies.com 
UW: www.usbwholesale.com 
X10: www.x10.com 

 

11.4. Schematics For Vehicle On-Board Electronics 

See following pages. 

11.5. Schematics For PC-To-Remote Interface 

See following pages. 

11.6. Schematics for Camera Mount  

See following pages. 
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D.A.V.E. PC Interface
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Camera mount for DARPA vehicle
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1/8 inchthickstyrenesheet

4x 1/4 inch 2-56 fillister head screws with hex nuts
2x 1/4 inch 4-40 flat head machine screws and nuts
6x 3/4 inch 4-40 flat head machine screws and nuts




